Уравнения
нестационарной фильтрации
1. Решение,
полученное на основе суперпозиции:
2. Решение на
основе функции Грина:
3. Второе
решение на основе функции Грина:
где
Уравнения для
стационарного периода
1. Решение,
полученное на основе суперпозиции:
где
2. Решение на
основе функции Грина:
где
Доступные
способы обработки и определяемые параметры
График
|
Способ
|
Параметры
|
Примечание
|
|
прямая
1)
|
|
|
подбор
|
|
|
|
подбор
|
|
подбор по отдельным точкам
|
|
подбор
|
|
подбор по отдельным точкам
|
|
подбор
|
|
|
|
подбор
|
|
|
|
подбор
|
|
|
|
прямая
2)
|
|
|
|
подбор
|
|
|
|
подбор
|
|
|
|
прямая
1)
|
|
|
подбор
|
|
|
|
биссектриса
|
|
|
При обработке используется
принцип суперпозиции или функция Грина. Для функции Грина
необходимо увеличить количество слагаемых в ряду.
1) по
прямолинейному участку, отвечающему конечным значениям
восстановления (при использовании функции Грина значение
проводимости в два раза меньше);
2) строится график
только по формуле, основанной на принципе суперпозиции.
|