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Preface

This book compiles and systematizes analytical solutions describing groundwater-
level changes in aquifers during aquifer tests, carried out under different hydro-
geological conditions. The book integrates the majority of known solutions from
well hydraulics and subsurface flow theory, starting from the works of the early
twentieth century by G. Thiem, P. Forchheimer, C.V. Theis, and M. Muskat up to
the most recent publications in periodicals. In this context, special mention should
be made of the invaluable contribution to the development of methods for
the mathematical analysis of hydrological processes made by M.S. Hantush,
H.H. Cooper, C.E. Jacob, N.S. Boulton, S.P. Neuman, and A.F. Moench, whose
efforts gave renewed impetus to the theory and methods of aquifer test analysis. The
book also contains interesting, though little known, solutions obtained by Russian
researchers (e.g., F.M. Bochever, V.M. Shestakov, V.A. Mironenko, etc.), which
have not been mentioned in widely distributed scientific publications.

This publication is designed as a handbook. It presents analytical equations for
most of conceptual models. Confined, unconfined, confined-unconfined, inhomo-
geneous, fracture-porous aquifers, as well as leaky aquifers and stratified
(multi-layer) aquifer systems are described in the book. A wide range of
groundwater-flow equations are given, accounting for complicating factors: ani-
sotropy, flow boundaries in horizontal and vertical planes, partial penetration of the
aquifer, wellbore storage, wellbore skin effect, the effect of capillary forces, etc.
Considered separately are constant-head tests, pumping tests with horizontal or
slanted wells, dipole flow tests, and slug tests.

The book comprises about 300 transient solutions for a single-well test with a
constant discharge rate. They create the basis for numerous equations for
groundwater-level recovery and drawdown in multi-well pumping tests, with
constant or variable discharge rate of the pumping wells.

In addition, quasi-steady-state and steady-state solutions are described, intended
for graphical processing of aquifer test results by the straight line method (more
than 100 solutions) and the type-curve method (more than 50 varieties of type
curves). Formulas for evaluating hydraulic characteristics are proposed for each
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graphical method. Many steady-state solutions are given, which can be used for
point-wise methods for evaluating hydraulic characteristics by maximal water-level
changes in complicated hydrological settings, for which transient relationships
acceptable for practical application have not been developed.

A set of both alternative and complementary solutions and methods of data
processing are proposed for each combination of conceptual model and test con-
ditions, thus making it possible to evaluate aquifer hydraulic characteristics. The
author’s own results are given, providing new graphical methods for field data
analysis and improving the reliability of parameter estimates.

The book is supplemented with appendices: here a hydrogeologist can find a vast
body of useful information. The appendices give mathematical descriptions to the
majority of functions used in the book, present their plots and possible approxi-
mations, and analyze the algorithms for application of complicated numerical–
analytical solutions utilized in rather well-known software developed by
S.P. Neuman, A.F. Moench, and others.

The presented analytical solutions have been implemented and tested in a
multifunctional software complex ANSDIMAT, developed by the author. The
reader is provided with a brief characteristic of the program and, if need be, can run
a test module. A trial version of the software and the complete commercial version
are available at www.ansdimat.com.

The book comprises three parts, supplemented by appendices. The first two parts
contain a systematized set of analytical relationships and methods for aquifer test
treatment. The solutions for a pumping test in single vertical wells are described in
the first part. The second part is devoted to various types of aquifer tests: pumping
from horizontal and slanted wells, pumping with variable discharge rates and
multi-wells pumping tests, dipole flow tests, constant-head tests, slug tests, and
recovery tests.

The third part gives a brief characteristic of ANSDIMAT software, which
incorporates all the potentialities illustrated in this book. The last part of the book
gives algorithms for evaluating groundwater-flow parameters by analytical and
graphical methods. An alternative approach is proposed to simulate well systems,
and additional capabilities of the program are considered, which are intended to
solve specific engineering-hydrogeological problems based on groundwater-flow
equations, describing liquid flow toward wells.

The author very much appreciates the invaluable help of Dr. Vyacheslav
Rumynin in the preparation of the book, including useful hints, comments, and
fruitful discussions which enabled the author to improve the quality of the present
publication in many respects. The author also appreciates the help of Dr. Gennady
Krichevets, who is not only a translator of the book but also a real expert attentive
to the works of his colleagues. His remarks regarding the work’s contents helped
the author to correct deficiencies made apparent during its preparation.

Saint Petersburg, Russia Leonid N. Sindalovskiy
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Notations

A Intercept of the straight line on the ordinate
a Aquifer hydraulic diffusivity, a ¼ km=S (for an unconfined

aquifer, a ¼ km=Sy), m
2/d

ar, az Horizontal and vertical hydraulic diffusivity, ar ¼ krm=S,
az ¼ kzm=S, m

2/d
B Leakage factor, m
Bp See LTp and LBp
Bw See LTw and LBw
C Slope of the straight line
Cw Water compressibility, Pa−1

D Shift of the plots of the observed and type curves in the
vertical direction (see Fig. 12.3)

d Distance between screen centers in the pumping and
observation wells (see Fig. 1.10), m

E Shift of the plots of the observed and type curves in the
horizontal direction (see Fig. 12.3)

F Shape factor (see Appendix 2), м
FR Function of the radius of influence, dimensionless
g Gravity acceleration, m/s2

H Initial head (see Fig. 2.2b), m
k Aquifer hydraulic conductivity, m/d
kr, kz Hydraulic conductivities in the horizontal and vertical

directions, respectively, m/d
kskin Hydraulic conductivity of the wellbore skin, m/d (see

Appendix 2)
k f
skin

Hydraulic conductivity of fracture skin (Fig. 6.1d), m/d

L Width of the strip aquifer, m
LBp; LBw Vertical distances from screen centers of the observation

and pumping wells to the aquifer bottom, respectively
(see Fig. 1.19), m

xiii



Lf Fracture length or fracture diameter (see Figs. 6.2 and 6.4), m
Lp Distance from the observation well to the planar boundary

(see Figs. 1.4 and A3.2); for a circular aquifer—the distance
from the observation well to the center of the circular aquifer
(see Fig. 1.9d); for a fractured–porous reservoir—the
horizontal distance from the observation well to the fracture
(Fig. 6.2c), m

LTp; LTw Vertical distances from the aquifer top (or from the initial
water table of an unconfined aquifer) to the screen centers
of the observation and pumping wells (see Figs. 1.19a
and 1.22), respectively, m

LUp; LUw Distances from the observation and pumping wells to the
perpendicular boundary for U-shaped (see Fig. 1.7b) and
rectangular (see Fig. 1.8b) aquifers, m

Lw Distance from the pumping well to the planar boundary (see
Figs. 1.4 and A3.2); for a circular aquifer—the distance from
the pumping well to the center of the circular aquifer (see
Fig. 1.9d), m

L0p; L
0
w Distances from the observation and image wells to the

second boundary of the strip (see Fig. A3.4) or
wedge-shaped (see Figs. 1.6b and A3.6) aquifer,
L0p ¼ L� Lp; L0w ¼ L� Lw, m

L0p Distance between the observation well and the line passing
through the pumping well parallel to x-axis (Fig. 1.26b), m

lp; lw Screen lengths of the observation and pumping wells,
respectively, m

m Thickness of a confined aquifer (see Fig. 1.1) or the initial
saturated thickness of an unconfined aquifer (see Fig. 2.1), m

mb Average thickness or diameter of blocks (see Fig. 6.1), m
mf Average aperture of a fissure (see Figs. 6.1 and 6.4), m
mskin Thickness of wellbore skin (see Appendix 2), m
mf

skin
Thickness of fracture skin (Fig. 6.1d), m

mw; mp Aquifer thicknesses at the points where the pumping and
observation wells are located (Fig. 1.26a), m

N Number of pumping wells
Nt Number of pumping wells in operation at moment t
n Number of image wells, the number of a term in a sum
n Porosity, dimensionless
nt Number of stages in water-level change in a river by

moment t
nti Number of steps in the discharge rate of the ith pumping

well by moment t
Q Discharge rate water inflow into open pits, m3/d
Qi Discharge rate of the ith pumping well, m3/d
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Qj
i

Discharge rate at the jth step in the ith pumping well
(Q0

i ¼ 0) (see Fig. 10.2), m3/d
R Radius of a circular aquifer radius of influence, m
Ro Radius of influence of an open pit, m
r Radial distance from the pumping to the observation well, m
ri Distance from the observation well in which the drawdown

is determined to the ith pumping well (Fig. 10.1), m
ro Effective pit radius, m
rc Casing radius, m
rp Radius of the observation well or piezometer, m
rw Radius of the pumping well, m
S Aquifer storage coefficient (elastic), dimensionless
SR Storage coefficient at water-level recovery (see Eq. 11.11),

dimensionless
Ss Aquifer specific storage, 1/m
Sskin Storage coefficient of wellbore skin, dimensionless
Sy Aquifer specific yield, dimensionless
s Drawdown in an observation well groundwater-level change

in an observation well after stream perturbation, m
s0 Drawdown in the observation well at the moment of

pumping cessation, m
s0 Initial (instantaneous) water-level change in the well (for slug

test) an instantaneous initial change in river water level, m
s0j Height of the jth stage of river-level change (s00 ¼ 0), m
sm Drawdown in the observation well during steady-state

period, m
smw Drawdown in the pumping well during steady-state period, m
so Drawdown at a pit outline, m
sr Recovery in the observation well after the cessation of

pumping at moment tr, sr ¼ s0 � s, m
sskin Water-level change in the wellbore zone (in the skin), m
sw Drawdown in the pumping well (a constant value in the case

of constant-head test), m
sð1Þ; sð2Þ Drawdown values in observation wells in the main and the

adjacent aquifers (zones), respectively, m
s0; s00 Drawdown values in aquitards or the drawdown in the block

for fractured-porous reservoir, m
T Aquifer transmissivity, m2/d
Tx; Ty Transmissivities of the aquifer in two perpendicular hori-

zontal directions, m2/d
t Time elapsed from the start of aquifer test, d
t0 Pumping duration, d
ti Starting moment of the operation of the ith pumping well,

measured from the start of the pumping test, d
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tj Moment of the start of the jth stage in a river (t1 ¼ 0), d
tr Time from the start of recovery, d
t ji Moment of the start of the jth step in the discharge of the ith

pumping well (t1i ¼ 0) (see Fig. 10.2), d
v Constant rate of level rise (drop) in a river, m/d
y Projection of the distance from the observation to the

pumping well onto the boundary line (see Fig. A3.2 and
Eq. A3.2), m

z Vertical distance between the screen centers of the pumping
and observation wells (Figs. 1.10 and 1.22), m

zf Vertical distance from the top of the aquifer to the fracture
(Fig. 6.4), m

zp Distance from the observation point in the separating
aquitard to the top (or bottom) of the main aquifer (Fig. 3.9)
for a fractured-porous reservoir (see Figs. 6.1, b)—the
distance to block center from the point where water-level
changes in the block are measured, m

zp1; zp2 Vertical distances from the confined aquifer top (or from the
initial water table of unconfined aquifer) to the bottom and
the top of the observation-well screen, respectively (see
Figs. 1.22 and 2.1), zp1 ¼ LTp þ lp=2; zp2 ¼ LTp � lp=2, m

zw1; zw2 Vertical distances from confined aquifer top (or from the
initial water table of an unconfined aquifer) to the bottom
and the top of the pumping well screen, respectively (see
Figs. 1.22 and 2.1),
zw1 ¼ LTw þ lw=2; zw2 ¼ LTw � lw=2, m

z ji Vertical distance from the center of the screen of the
observation well or the open part of piezometer to the jth
image well reflected about the top (i = 1) or bottom (i = 2)
boundary in an aquifer bounded in thickness (see
Fig. A3.12a): it is determined by Eqs. A3.22 and A3.23, m

a Reciprocal of Boulton’s delay index (see Eqs. 2.15 and
2.16), 1/d

a Angle between the abscissa and the direction of anisotropy
(see Fig. 1.3c), degrees

DL Retardation coefficient of the semipervious stream bed:
depending on the solution, it is determined by Eq. 5.4 or
5.12, m

e Recharge rate, m/d
q Distance between the observation and image wells (see

Figs. A3.2 and A3.11), m
qj Distance between the observation well and the jth image

well for wedge-shaped aquifers, determined by Eq. A3.6
(see Fig. A3.6 and Eq. A3.6), m
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q j
i

Distance between the real observation well and the jth image
well reflected from the left (i = 1) or right (i = 2) boundary
(see Fig. A3.4): it is determined by Eqs. A3.3 and A3.4, m

qU Distance from the pumping to the image well reflected about
the perpendicular boundary of U-shaped or rectangular
aquifer (see Figs. 1.7 and 1.8): it is determined by
Eq. A3.15, m

q j
Ui

Distance from the observation well to the jth image well
of the second row, reflected about the left (i = 1) or right (i =
2) boundary of U-shaped aquifer (see Fig. A3.8): it is
determined by Eqs. A3.13 and A3.14, m

q j
i;I

Distance from the observation well to the jth image well: see
comment to Eq. 10.16, m

qw Water density, kg/m3

h For a horizontally anisotropic aquifer (see Fig. 1.3b, c), for
an aquifer of nonuniform thickness (see Fig. 1.26b), and
sloping unconfined aquifers (see Fig. 2.3c)—the angle
between the x-axis and the straight line connecting the
pumping and observation wells; for a wedge-shaped aquifer
(see Fig. 1.6b)—the angle between two intersecting bound-
aries; for a circular aquifer—the angle between the vectors
from the center of the circular aquifer to the pumping and
observation well, respectively (Fig. 1.9d); for a slanted well
(see Fig. 7.2c, d)—the angle between the bottom and the
well, degrees

hs Slope of the bottom of a slopping unconfined aquifer (see
Fig. 2.3), degrees

v Coefficient of vertical anisotropy, v ¼ ffiffiffiffiffiffiffiffiffiffi
kz=kr

p
,

dimensionless

Superscripts and Subscripts

b Refers to a block in fractured-porous medium
I ¼ 1; 2 Shows the position of an image well in bounded aquifers

from the side of its left or right boundary it is used for
multi-well, constant-head aquifer tests in bounded aquifers

i ¼ 1; 2 Shows the position of an image well in bounded aquifers:
from the side of the left (top) or right (bottom) boundary, i is
the number of a pumping well in multi-well tests

f Refers to a fracture
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j For constant-head pumping in bounded aquifers, this is the
number of an image well obtained by reflection about a
boundary for variable discharge pumping, this is the number
of a stage in discharge

o Refers to an open pit
p Refers to an observation well or piezometer
w Refers to a pumping well
1; 2 Refers to the first and second observation wells or the main

and adjacent aquifers (zones)
Stroke Symbols with strokes generally refer to an aquitard, block,

or a reduced parameter

Mathematical Constants
p p ¼ 3:141592653589793
e

Euler’s number: e ¼ 2:718281828459045 e ¼
X1
n¼0

1
n!

c Euler’s constant: c ¼ 0:577215664901533

c ¼ lim
n!1 � ln nþ

Xn
k¼1

1
k

 !

Roots of Transcendent Equations
(for details, see Appendix 7)

cn Positive roots of equation cn tan cn ¼ c; c = const
xn Positive roots of equation J0 xnð Þ ¼ 0
xn;1 Positive roots of equation J1 xn;1

� � ¼ 0
xn;m Positive roots of equation Jm xn;m

� � ¼ 0
yn;m Positive roots of equation J′m(yn,m)= 0
1n Positive roots of equation

J0 1nð ÞY0 1ncð Þ � J0 1ncð ÞY0 1nð Þ ¼ 0; c = const
nn Positive roots of equation

J0 nnð ÞY1 nncð Þ � J1 nncð ÞY0 nnð Þ ¼ 0; c = const

List of Functions Used in the Book
(for details, see Appendix 7)

A u; bð Þ Flowing well-function for nonleaky aquifers
erf uð Þ Error function
erfc uð Þ Complementary error function
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F u; bð Þ Function for large-diameter wells for nonleaky aquifer
F u; b1; b2ð Þ Function for the drawdown in an observation well located in

a nonleaky aquifer in the case of pumping from a
large-diameter well

FL u; b2;b3ð Þ Function for large-diameter wells for leaky aquifer
FL u; b1;b2; b3ð Þ Function for the drawdown in an observation well located in

a leaky aquifer during pumping from a large-diameter
pumping well

Fl u; b1; b2ð Þ Linear-source function (see Eq. 1.95)
FB u; bð Þ Boulton function
Fs u; bð Þ Function for water-level changes in a pumping well during a

slug test
Fsp u; bð Þ Function for water-level changes in an observation well

during slug test
G uð Þ Flowing well discharge function for nonleaky aquifers
G u; bð Þ Flowing well discharge function for leaky aquifers
ierfc uð Þ Iterated integral of the complementary error function
J0 uð Þ Bessel functions of the first kind of the order zero
J1 uð Þ Bessel functions of the first kind of the order one
Jm uð Þ Bessel functions of the first kind of the order m
J� u; b1; b2ð Þ Special function
H u; bð Þ Special function
I0 uð Þ Modified Bessel functions of the first kind of the order zero
I1 uð Þ Modified Bessel functions of the first kind of the order one
Im uð Þ Modified Bessel functions of the first kind of the order m
K0 uð Þ Modified Bessel functions of the second kind of the order

zero
K1 uð Þ Modified Bessel functions of the second kind of the order

one
Km uð Þ Modified Bessel functions of the second kind of the order m
M u; bð Þ Special function
W uð Þ Well-function
W u; bð Þ Well-function for leaky aquifers
WNW u; bð Þ Special function
Y0 uð Þ Bessel functions of the second kind of the order zero
Y1 uð Þ Bessel functions of the second kind of the order one
Z u; b1; b2ð Þ Flowing well-function for leaky aquifers
C uð Þ Gamma function
u; b; b1; b2; b3 Function arguments
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Part I
Basic Analytical Solutions

The first part of the book contains basic analytical relationships, describing
groundwater-level changes in aquifers during pumping tests. All solutions refer to
pumping tests with a single pumping well at a constant discharge rate throughout
the test.

This part is divided into chapters, each corresponding to a conceptual model:
confined aquifer, unconfined aquifer, leaky aquifer, horizontally heterogeneous
aquifer, and fractured-porous medium. The main standard models account for the
effect of boundaries in the horizontal or vertical plane. Pumping near a stream is
considered separately.

Each model is accompanied by a detail description of the pumping test, and a set
of either alternative or complementary solutions, which are used to evaluate the
hydraulic characteristics of aquifers. The complementary solutions are those taking
into account some complicating factors, such as aquifer anisotropy, wellbore
storage, wellbore skin effect, the effect of capillary forces, etc. In the case of
deformation of the profile groundwater flow structure, which may be caused by
partially penetrating pumping well, the drawdown functions obtained for a
piezometer and the drawdown averaged over the length of the pumping well screen
can be compared.

Equations for the drawdown are given not only for the pumped aquifer, but also,
where possible, for adjacent aquifers and for aquitards. Of interest are the solutions
that determine the drawdown in the pumping well itself. Their use is indispensable
to obtain accurate and reliable parameter estimates based on the results of pumping
from large-diameter wells.

Basic analytical relationships are considered successively for transient,
quasi-steady-state, and steady-state groundwater flow regimes. Transient solutions
are used in parameter evaluation by the curve-fitting method and the type-curve
method (see Chap. 12). Quasi-steady-state and steady-state solutions are used to

http://dx.doi.org/10.1007/978-3-319-43409-4_12


derive formulas to evaluate parameters by the straight line method. All possible
graphical processing methods are included in tables containing: the name of the
method; a plot of drawdown curve, intended for its implementation; and formulas
for evaluating the required parameters by the position of the type curve or straight
line.
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Chapter 1
Confined Aquifers

The top and bottom of a homogeneous aquifer are overlain and underlain by
aquicludes, respectively (Fig. 1.1). In the course of testing, the groundwater level
never drops below the aquifer top. Aquifer thickness is constant (except for the case
considered in Sect. 1.4).

This chapter gives basic analytical solutions for calculating the drawdown in
fully penetrating (see Sect. 1.1) and partially penetrating (see Sects. 1.2 and 1.3)
pumping and observation wells.

1.1 Fully Penetrating Well

The pumping well is fully penetrating, i.e., its screen length is equal to the thickness
of the aquifer (Fig. 1.1).

This section contains transient, quasi-steady-state, and steady-state analytical
solutions for calculating drawdown in aquifers with infinite (see Sect. 1.1.1),
semi-infinite (see Sect. 1.1.2), and limited (see Sects. 1.1.3–1.1.7) lateral extents.
The aquifers with limited lateral extent include strip aquifers, wedge-shaped
aquifers, U-shaped aquifers, and aquifers bounded by a closed rectangular or cir-
cular contour.

The drawdown in the aquifer is determined at any distance from the pumping
well.

Transient solutions can be used to evaluate the transmissivity (T) and the storage
coefficient (S) [or hydraulic diffusivity (a)] of an aquifer. For Moench solutions, the
hydraulic conductivity and the thickness of the wellbore skin (kskin; mskin) can also
be evaluated.

© Springer International Publishing Switzerland 2017
L.N. Sindalovskiy, Aquifer Test Solutions, DOI 10.1007/978-3-319-43409-4_1
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1.1.1 Aquifer of Infinite Lateral Extent

The basic assumptions and conditions (Figs. 1.2 and 1.3) are:

• the aquifer is assumed to be isotropic or horizontally anisotropic with infinite
lateral extent;

• the wellbore storage and wellbore skin can be taken into account in evaluating
the drawdown.

A typical plot of drawdown in a confined aquifer is given in Fig. 12.9. For the
effect of hydraulic parameters, wellbore storage, and wellbore skin on the draw-
down in the observation and pumping wells, see Figs. 12.10 and 12.11.

Fig. 1.1 Schematic diagram
of a pumping test in a
confined aquifer. The
pumping well is fully
penetrating. Q is the pumping
well discharge, s is well
drawdown, and m is
aquifer thickness

Fig. 1.2 Confined aquifer
with infinite lateral extent
(cross-section)
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Basic Analytical Relationships
Transient Flow Equations

1. The principal solution for drawdown in a confined aquifer is the Theis
solution (Carslow and Jaeger 1959; Theis 1935):

s ¼ Q
4pT

W
r2S
4Tt

� �
; ð1:1Þ

W uð Þ ¼
Z1
u

exp �sð Þ
s

ds; ð1:2Þ

where s is the drawdown in an observation well, m; Q is the discharge rate, m3/d;
T ¼ km is the transmissivity, m2/d; k; m are the hydraulic conductivity (m/d) and
the thickness (m) of the aquifer; S is the storage coefficient, dimensionless; r is the
radial distance from the pumping to the observation well, m; t is the time elapsed
from the start of pumping, d; W uð Þ is the well-function (see Appendix 7.1).

For convenience in the subsequent graphic-analytical calculations, we rewrite
the solution (Eq. 1.1) as follows:

s ¼ Q
4pT

W
r2

4at

� �
; ð1:3Þ

where a ¼ T=S is hydraulic diffusivity, m2/d.
The Theis solution assumes the wellbore radius is infinitely small, i.e., the

wellbore storage is neglected.
2. The Moench solution (Moench 1997) is an extended solution for drawdown in

an observation well, taking into account the wellbore storage, skin-effect, and the
delayed response of observation piezometer:

s ¼ Q
4pT

f t; r; rw; rc; rp; T; S; kskin;mskin
� �

; ð1:4Þ

where rw; rc; rp are the radiuses of the pumping well, its casing, and the obser-
vation well, respectively, m; and kskin; mskin are the hydraulic conductivity (m/d)
and thickness (m) of the wellbore skin (see Appendix 2).

The functional relationship (Eq. 1.4) is treated with the use of an algorithm from
the WTAQ3 program (see Appendix 5.3).

3. The Moench solution (Moench 1997) is an extended solution for drawdown in
the pumping well, taking into account its storage and skin-effect:

sw ¼ Q
4pT

f t; rw; rc; T ; S; kskin;mskinð Þ; ð1:5Þ

where sw is drawdown in the pumping well, m.
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The functional relationship (1.5) is treated with the use of an algorithm from the
WTAQ3 program (see Appendix 5.3).

4. The solution proposed by Papadopulos and Cooper (1967) is an extended
solution, accounting for the wellbore storage and written for the drawdown in the
observation well:

s ¼ Q
4pT

F
r2wS
4Tt

;
r
rw

; S
r2w
r2c

� �
; ð1:6Þ

F u; b1; b2ð Þ ¼ 8
b2
p

Z1
0

1� exp � s2

4u

� �� ��
�

� J0 b1sð Þ sY0 sð Þ � 2b2Y1 sð Þ½ � � Y0 b1sð Þ sJ0 sð Þ � 2b2J1 sð Þ½ �
sJ0 sð Þ � 2b2J1 sð Þ½ �2 þ sY0 sð Þ � 2b2Y1 sð Þ½ �2

)
ds
s2

;

ð1:7Þ

where J0 �ð Þ and J1 �ð Þ are Bessel functions of the first kind of zero and first order;
Y0 �ð Þ and Y1 �ð Þ are Bessel functions of the second kind of zero and first order (see
Appendix 7.13).

5. The solution proposed by Papadopulos and Cooper (1967) is an extended
solution accounting for the wellbore storage, written for the drawdown in the
pumping well:

sw ¼ Q
4pT

F
r2wS
4Tt

; S
r2w
r2c

� �
; ð1:8Þ

F u; bð Þ ¼ 32b2

p2

Z1
0

1� exp �s2= 4uð Þ½ �
sJ0 sð Þ � 2bJ1 sð Þ½ �2 þ sY0 sð Þ � 2bY1 sð Þ½ �2

ds
s3

; ð1:9Þ

where F u; bð Þ is a function for large-diameter wells (see Appendix 7.9).
6. The Hantush solution for a horizontally anisotropic aquifer (Hantush 1966;

Hantush and Thomas 1966):

s ¼ Q

4p
ffiffiffiffiffiffiffiffiffi
TxTy

p W
r2 Ty cos2 hþ Tx sin2 h
� �

S

4TxTyt

" #
; ð1:10Þ

where Tx ¼ kxm and Ty ¼ kym are the transmissivities of the aquifer in two per-
pendicular horizontal directions, m2/d; kx; ky are hydraulic conductivities in two
perpendicular horizontal directions, m/d; h is the angle in degrees between the x-axis
and the straight line connecting the pumping and observation wells (Fig. 1.3b).

6 1 Confined Aquifers



Equation 1.10 assumes the anisotropy direction coinciding with the abscissa
(Fig. 1.3b). When this is not the case (Fig. 1.3c), the angle h in (Eq. 1.10) is
replaced by the difference ðh� aÞ, where a is the angle in degrees between the
abscissa and the direction of anisotropy.

Unlike all transient solutions given in this section, Eq. 1.10, given angle a, can
be used to determine the transmissivities along the anisotropy directions (Tx; Ty)
and the storage coefficient (S). The angle h can be readily derived from the coor-
dinates of the pumping and observation wells.

Quasi-Steady-State Flow Equation
In the plot of observation s� lg t, the quasi-steady-state period is represented by a
linear segment. The beginning of this period (see Fig. 12.9) is evaluated via the
argument of the well-function W uð Þ (see Appendix 7.1): for u � 0:05, Eq. 1.1 is
approximated by a straight line (Eq. 1.11).

The Cooper–Jacob solution (Carslow and Jaeger 1959; Jacob 1946; Cooper and
Jacob 1946):

s ¼ Q
4pT

ln
2:25Tt
r2S

¼ 0:183Q
T

lg
2:25Tt
r2S

ð1:11Þ

or, expressed in terms of hydraulic diffusivity:

s ¼ Q
4pT

ln
2:25at
r2

¼ 0:183Q
T

lg
2:25at
r2

: ð1:12Þ

Graphic-Analytical Processing
The procedures of graphic-analytical processing include the method of type curve
for the entire testing period, the method of straight line for a quasi-steady-state
period, and the method of horizontal straight line for the difference between
water-level drawdown in two observation wells in a quasi-steady-state period. The
relationships given in Table 1.1 have been derived from Eqs. 1.3 and 1.12.

Fig. 1.3 Confined horizontally anisotropic aquifer. a Cross-section; b, c planar views with the
anisotropy direction, b coinciding and c not coinciding with the coordinate axis
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In Table 1.1, the values of transmissivity and hydraulic diffusivity are evaluated
independently. Given these parameters, the storage coefficient of the aquifer can be
readily evaluated: S ¼ T=a. In addition, the hydraulic diffusivity and storage
coefficient can be evaluated from the intercept on the abscissa (Table 1.2).

Table 1.1 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Straight line
T ¼ 0:183 Q

C
, lg a ¼ A

C
þ lg

r2

2:25

s— lg r The same
T ¼ 0:366Q

C
, lg a ¼ 2

A
C
� lgð2:25 � tÞ

s— lg
t
r2

The same
T ¼ 0:183 Q

C
, lg a ¼ A

C
� lgð2:25Þ

lg s— lg t
Type curve: lgW uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

lg s— lg r Type curve: lgW uð Þ— lg
ffiffiffi
u

p
T ¼ Q

4p10D
, a ¼ 10�2E

4t

s1 � s2ð Þ— lg t Horizontal straight line
T ¼ Q

2p � A ln
r2
r1

A is the intercept of the straight line on the ordinate (see Sects. 12.1.1 and 12.1.2); C is the slope
of the straight line (see Sect. 12.1.1); D, E are the shifts of the plots of the observed and type
curves (see Sect. 12.1.3) in the vertical (D) and horizontal (E) directions; s1; s2; r1; r2 are the
values of drawdown (s) and the distances from the pumping well (r) to the first and second
observation wells, respectively. In the case of testing in a horizontally anisotropic aquifer,
graphic-analytical methods yield effective transmissivity and hydraulic diffusivity, in this case:
T ¼ ffiffiffiffiffiffiffiffiffi

TxTy
p

, a ¼ Tx=S (for h ¼ 0�), a ¼ Ty=S (for h ¼ 90�)

Table 1.2 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Straight line
a ¼ r2

2:25tx
, S ¼ 2:25Ttx

r2

s— lg r The same
a ¼ r2x

2:25t
, S ¼ 2:25Tt

r2x

s— lg
t
r2

The same
a ¼ 1

2:25 t=r2ð Þx
, S ¼ 2:25T t=r2ð Þx

tx, rx, and ðt=r2Þx are intercepts on the abscissas of appropriate plots (see Fig. 12.1)
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1.1.2 Semi-infinite Aquifer

The basic assumptions and conditions (Fig. 1.4) are:

• the aquifer is isotropic and semi-infinite;
• the boundary is linear and infinite.

Two variants of boundary conditions are considered (see Fig. A3.1):
(1) constant-head boundary and (2) impermeable boundary.

To solve the problem, the image-well method is used: a single image well is intro-
duced (for the distance to the image well and the sign of its discharge, see Fig. A3.2).

Typical plots of drawdown in the observation well for two variants of boundary
conditions are given in Fig. 12.12.

1.1.2.1 Semi-infinite Aquifer: Constant-Head Boundary

Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
4pT

W
r2

4at

� �
�W

q2

4at

� �� �
; ð1:13Þ

where q is the horizontal distance between the observation and image wells (see
Fig. A3.2 and Eq. A3.1), m.

Fig. 1.4 Confined semi-infinite aquifer. The dashed line in the right shows the image well. Lw, Lp
are the distances from the pumping and observation wells to the boundary, respectively

1.1 Fully Penetrating Well 9
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Steady-State Flow Equations

1. The drawdown in the observation well

sm ¼ Q
2pT

ln
q
r
¼ 0:366Q

T
lg
q
r
: ð1:14Þ

2. The drawdown in the pumping well (Forchheimer 1914)

smw ¼ Q
2pT

ln
2Lw
rw

; ð1:14aÞ

where sm; smw are the drawdowns in the observation and the pumping wells during
steady-state period, m; Lw is the distance from the pumping well to the boundary, m.

Graphic-Analytical Processing
The relationships given in Table 1.3 have been derived from Eqs. 1.13 and 1.14.

1.1.2.2 Semi-infinite Aquifer: Impermeable Boundary

Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
4pT

W
r2

4at

� �
þW

q2

4at

� �� �
: ð1:15Þ

Table 1.3 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
T ¼ Q

2p � A ln
q
r

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

sm— lg
q
r

Straight line
T ¼ 0:366Q

C

s1 � s2ð Þ— lg t Horizontal straight linea
T ¼ Q

2p � A ln
q1r2
q2r1

aThe parameters are derived from drawdown values in the steady-state flow period
q1; q2 are the distances from the first and second observation wells to the image well
W0ðuÞ ¼ WðuÞ �Wður0Þ, r0 ¼ q=rð Þ2

10 1 Confined Aquifers



Quasi-Steady-State Flow Equation

s ¼ Q
2pT

ln
2:25at
rq

¼ 0:366Q
T

lg
2:25at
rq

: ð1:16Þ

Graphic-Analytical Processing
The relationships given in Table 1.4 have been derived from Eqs. 1.15 and 1.16.

1.1.3 Strip Aquifer

The basic assumptions and conditions (Fig. 1.5) are:

• the aquifer is isotropic and bounded in the horizontal plane;
• the boundaries are two infinite parallel straight lines.

Table 1.4 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Straight line
T ¼ 0:366Q

C
, lg a ¼ A

C
þ lg

rq
2:25

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p 10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

s— lg rq Straight line
T ¼ 0:366Q

C
, lg a ¼ A

C
� lgð2:25 � tÞ

s— lg
t
rq

The same
T ¼ 0:366Q

C
, lg a ¼ A

C
� lg 2:25

s1 � s2ð Þ— lg t Horizontal straight line
T ¼ Q

2p � A ln
q2r2
q1r1

W0 uð Þ ¼ W uð ÞþW ur0ð Þ; r0 ¼ q=rð Þ2

Fig. 1.5 Confined bounded
aquifer (strip aquifer). L is the
width of the strip aquifer

1.1 Fully Penetrating Well 11



Three variants of boundary conditions are considered (see Fig. A3.3): (1) two
constant-head boundaries, (2) two impermeable boundaries, and (3) mixed
boundary conditions—constant-head and impermeable boundaries.

To solve the problem, the image-well method is used: image wells form an
infinite row (for the distances to the image wells and the signs of their discharges,
see in Fig. A3.4).

Typical plots of drawdown in the observation well, taking into account the
effects of different types of boundary conditions, are given in Fig. 12.13.

1.1.3.1 Strip Aquifer: Constant-Head Boundaries

Basic Analytical Relationships
Transient Flow Equations

1. Solution based on the superposition principle:

s ¼ Q
4pT

W
r2

4at

� �
þ
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i

� �2
4at

" #( )
; ð1:17Þ

where q j
i is the distance between the real observation well and the jth image well

reflected from the left (i = 1) or right (i = 2) boundary (see Fig. A3.4): they are
determined by Eqs. A3.3 and A3.4, m; n ! 1 is the number of reflections in the
same boundary. In such solutions for bounded aquifers, the infinite number of
reflections is replaced by a finite number such that its increase would have no effect
on calculation accuracy.

2. Green’s function solution (Bochever 1959):

s¼ Q
4pT

ln
cosh

py
L
� cospb1

cosh
py
L
� cospb2

þ
X1
n¼1

1
n
cosnpb1� cosnpb2ð Þ�

�
exp �npy

L


 �
erfc

np
ffiffiffiffi
at

p
L

� y

2
ffiffiffiffi
at

p
� �

þ

þ exp
npy
L


 �
erfc

np
ffiffiffiffi
at

p
L

þ y

2
ffiffiffiffi
at

p
� �

0
BBB@

1
CCCA

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

ð1:18Þ

where b1 ¼ Lp þ Lw
� �

=L; b2 ¼ Lp � Lw
� �

=L; L is the width of the strip aquifer, m;
Lw and Lp are the distances from the pumping well and the observation well to the left
boundary, m; n is summation index; y is the projection of the distance between the
observation and pumping wells to the boundary line (see Fig. A3.4 and Eq. A3.2), m.

3. The second Green’s function solution, following from the solution (Eq. 3.15)
for a leaky aquifer (Hantush and Jacob 1955) at B ! 1:

12 1 Confined Aquifers
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s ¼ Q
2pT

X1
n¼1

1
n
sin

npLp
L

sin
npLw
L

�

�
exp � npy

L


 �
erfc

ffiffiffiffiffiffiffi
y2

4at

r
� np

ffiffiffiffi
at

p
L

 !
�

� exp
npy
L


 �
erfc

ffiffiffiffiffiffiffi
y2

4at

r
þ np

ffiffiffiffi
at

p
L

 !
2
666664

3
777775

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð1:19Þ

where erfc �ð Þ is the complementary error function (see Appendix 7.12).

Steady-State Flow Equations

1. Solution based on the superposition principle:

sm ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð1:20Þ

r0 ¼ qn1
r

Yn�1

j¼1;3;...

q j
1q

j
2

qjþ 1
1 qjþ 1

2

 !
: ð1:21Þ

2. Green’s function solution (Muskat 1937):

sm ¼ Q
4pT

ln r0 ¼ 0:183Q
T

lg r0; ð1:22Þ

r0 ¼
cosh

py
L

� cos pb1

cosh
py
L

� cos pb2
: ð1:23Þ

Table 1.5 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
T ¼ Q

2p � A ln r0 b, T ¼ Q
4p � A ln r0 c

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

sm— lg r0 Straight line
T ¼ 0:366Q

C
b, T ¼ 0:183Q

C
c

s1 � s2ð Þ— lg t Horizontal straight linea
T ¼ Q

2p � A ln
r01
r02

b, T ¼ Q
4p � A ln

r01
r02

c

aBased on drawdown values for steady-state flow period
bDerived from solution (Eq. 1.20), r0 is determined by Eq. 1.21
cDerived from solution (Eq. 1.22), r0 is determined by Eq. 1.23

W0 uð Þ ¼ W uð Þþ
Pn

j¼1 �1ð Þ j
P2

i¼1W ur0ji
� �

, r0ji ¼ q j
i =r

� �2
, r01; r

0
2 are reduced distances for the

first and second observation wells

Graphic-Analytical Processing
The relationships given in Table 1.5 have been derived from Eqs. 1.17, 1.20,
and 1.22.
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1.1.3.2 Strip Aquifer: Impermeable Boundaries

Basic Analytical Relationships
Transient Flow Equations

1. Solution based on the superposition principle:

s ¼ Q
4pT

W
r2

4at

� �
þ
Xn
j¼1

X2
i¼1

W
q j
i

� �2
4at

" #( )
: ð1:24Þ

2. Green’s function solution (Bochever 1959):

s ¼ Q
4pT

4p
ffiffiffiffi
at

p
L

i erfc
y

2
ffiffiffiffi
at

p
� �

þ ln
exp 2

py
L


 �
4 cosh

py
L

� cos pb1

 �

cosh
py
L

� cos pb2

 ��

�
X1
n¼1

1
n

cos npb1 þ cos npb2ð Þ�

�
exp � npy

L


 �
erfc

np
ffiffiffiffi
at

p
L

� y

2
ffiffiffiffi
at

p
� �

þ

þ exp
npy
L


 �
erfc

np
ffiffiffiffi
at

p
L

þ y

2
ffiffiffiffi
at

p
� �

0
BBBB@

1
CCCCA

2
666666664

3
777777775

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

;

ð1:25Þ

where b1 ¼ Lp þ Lw
� �

=L; b2 ¼ Lp � Lw
� �

=L; i erfcð�Þ is the iterated integral of the
complementary error function (see Appendix 7.12).

For large times, the third term in the curly brackets in (Eq. 1.25) can be omitted,

and for
y

2
ffiffiffiffi
at

p \0:05, the iterated integral of the complementary error function tends

to a constant of 0.56. This allows the hydraulic characteristics to be evaluated by the
straight-line method (Borevskiy et al. 1973) on a plot in coordinates s� ffiffi

t
p

(see
Table 1.6 and Fig. 12.14).

3. Second Green’s function solution. This solution was derived from solution
(Eq. 3.17) for a leaky aquifer (Hantush and Jacob 1955) at B ! 1:

s ¼ Q
2pT

ffiffiffi
p

p
L

exp � y2

4at

� � ffiffiffiffiffiffiffi
4at

p
� ffiffiffi

p
p

y erfc

ffiffiffiffiffiffiffi
y2

4at

r" #
þ
X1
n¼1

1
n
cos

npLp
L

cos
npLw
L

�
�(

� exp � npy
L


 �
erfc

ffiffiffiffiffiffiffi
y2

4at

r
� np

ffiffiffiffi
at

p
L

 !
� exp

npy
L


 �
erfc

ffiffiffiffiffiffiffi
y2

4at

r
þ np

ffiffiffiffi
at

p
L

 !" #))
:

ð1:26Þ

Graphic-Analytical Processing
The relationships given in Table 1.6 have been derived from Eqs. 1.24 and 1.25.
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1.1.3.3 Strip Aquifer: Constant-Head and Impermeable Boundaries

Basic Analytical Relationships
Transient Flow Equations

1. Solution based on the superposition principle:

s ¼ Q
4pT

W
r2

4at

� �
þ
Xn

j¼1;3...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2W
q j
i

� �2
4at

 !
þ

þ
Xn

j¼2;4...

�1ð Þj=2
X2
i¼1

W
q j
i

� �2
4at

 !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð1:27Þ

2. Green’s function solution (Bochever 1959):

s ¼ Q
4pT

ln
cosh

py
2L

� cos pb1

 �

cosh
py
2L

þ cos pb2

 �

cosh
py
2L

þ cos pb1

 �

cosh
py
2L

� cos pb2

 � þ

þ
X1
n¼1

1� �1ð Þn
n

cos npb1 � cos npb2ð Þ�

�
exp � npy

2L


 �
erfc

np
ffiffiffiffi
at

p
2L

� y

2
ffiffiffiffi
at

p
� �

þ

þ exp
npy
2L


 �
erfc

np
ffiffiffiffi
at

p
2L

þ y

2
ffiffiffiffi
at

p
� �

0
BBB@

1
CCCA

2
666666664

3
777777775

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

; ð1:28Þ

where b1 ¼
Lp þ Lw

2L
, b2 ¼

Lp � Lw
2L

. Here, Lp and Lw are the distances from the

observation and pumping wells to the constant-head boundary, m.

Table 1.6 Graphic-analytical parameter evaluation

Plot Method Relationship

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

s—
ffiffi
t

p
Straight linea

T ¼ 0:56Q
ffiffiffi
a

p
LC

, a ¼ TLC
0:56Q

� �2

s1 � s2ð Þ— lg t Horizontal straight line
T ¼ 2nþ 1ð ÞQ

2p � A ln
r02
r01

aSee comment to the solution (Eq. 1.25)

W0 uð Þ ¼ W uð Þþ
Pn

j¼1

P2

i¼1W ur0ji
� �

, ri 0j ¼ q j
i =r

� �2
; r0 ¼ r

Qn

j¼1q
j
1q

j
2


 �1= 2nþ 1ð Þ
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Steady-State Flow Equations
1. Solution based on the superposition principle:

sm ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð1:29Þ

r0 ¼ qn1
r

Yn�3

j¼1;5;9...

q j
1q

jþ 1
1 qjþ 1

2 qjþ 2
2

qjþ 2
1 qjþ 3

1 q j
2q

jþ 3
2

: ð1:30Þ

2. Green’s function solution (Hantush and Jacob 1954):

sm ¼ Q
4pT

ln r0 ¼ 0:183Q
T

lg r0; ð1:31Þ

r0 ¼
cosh

py
2L

� cos pb1

 �

cosh
py
2L

þ cos pb2

 �

cosh
py
2L

þ cos pb1

 �

cosh
py
2L

� cos pb2

 � : ð1:32Þ

Graphic-Analytical Processing
The relationships given in Table 1.7 have been derived from Eqs. 1.27, 1.29,
and 1.31.

Table 1.7 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
T ¼ Q

2p � A ln r0 b, T ¼ Q
4p � A ln r0 c

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

s— lg r0 Straight line
T ¼ 0:366Q

C
b, T ¼ 0:183Q

C
c

s1 � s2ð Þ— lg t Horizontal straight linea
T ¼ Q

2p � A ln
r01
r02

b, T ¼ Q
4p � A ln

r01
r02

c

aBased on drawdown values for steady-state flow period
bDerived from solution (Eq. 1.29), r0 is determined by Eq. 1.30
cDerived from solution (Eq. 1.31), r0 is determined by Eq. 1.32

W0 uð Þ ¼ W uð Þþ
Pn

j¼1;3...

P2

i¼1 �1ð Þðjþ 2i�1Þ=2W ur0ji
� �þPn

j¼2;4... �1ð Þj=2
P2

i¼1W ur0ji
� �

; r0ji ¼ q j
i =r

� �2

16 1 Confined Aquifers



1.1.4 Wedge-Shaped Aquifer

The basic assumptions and conditions (Fig. 1.6) are:

• the aquifer is isotropic and bounded in the horizontal plane;
• the boundaries are two semi-infinite straight half-lines intersecting at an angle

between 1° and 90°.

Three variants of boundary conditions are considered (see Fig. A3.5):
(1) constant-head boundaries; (2) two impermeable boundaries; (3) mixed boundary
conditions—constant-head and impermeable boundaries.

To solve the problem, the image-well method is used: the number of image wells
is determined by the angle h between the intersecting boundaries (Table A3.1); for
the signs of the image-well discharges, see Fig. A3.6.

In the case of an aquifer-quadrant (see Fig. A3.6b), where h ¼ 90�, the imagewells
number three and the formulas for distances become much simpler (see Eq. A3.11).

The analytical solutions for wedge-shaped aquifers fail to allow an arbitrary
angle h to be specified between the two boundaries. Therefore, the value of h in the
flow equation should be taken in accordance with the rule in Appendix 3 for a
wedge-shaped aquifer (see Eq. A3.5).

1.1.4.1 Wedge-Shaped Aquifer: Constant-Head Boundaries

Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
4pT

W
r2

4at

� �
þ
Xn
j¼1

�1ð Þ jW q2j
4at

 !" #
; ð1:33Þ

Fig. 1.6 Wedge-shaped confined aquifer: a cross-section and b planar view. L0w; L
0
p are the

distances from the pumping and observation wells to the second boundary, respectively; h is the
angle between two intersecting boundaries
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Table 1.8 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
T ¼ Q

2p � A ln r0

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

s1 � s2ð Þ— lg t Horizontal straight linea
T ¼ Q

2p � A ln
r01
r02

aBased on drawdown values for steady-state flow period

W0 uð Þ ¼ W uð Þþ
Pn

j¼1 �1ð Þ jW ur0j

 �

; r0j ¼ qj=r
� �2

where qj is the distance between the observation well and the jth image well (see
Fig. A3.6a), determined by Eq. A3.6, m; n is the number of image wells for the
given angle h (see Eq. A3.5 and Table A3.1).

Steady-State Flow Equation

sm ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð1:34Þ

r0 ¼
Yn

j¼1;3;...

qj

,
r
Yn

j¼2;4;...

qj: ð1:35Þ

Graphic-Analytical Processing
The relationships given in Table 1.8 have been derived from Eqs. 1.33 and 1.34.

1.1.4.2 Wedge-Shaped Aquifer: Impermeable Boundaries

Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
4pT

W
r2

4at

� �
þ
Xn
j¼1

W
q2j
4at

 !" #
; ð1:36Þ

Quasi-Steady-State Flow Equation

s ¼ nþ 1ð ÞQ
4pT

ln
2:25at
r02

¼ 0:183 nþ 1ð ÞQ
T

lg
2:25at
r02

; ð1:37Þ

r0 ¼ r
Yn
j¼1

qj

 !1=ðnþ 1Þ
: ð1:38Þ
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Graphic-Analytical Processing
The relationships given in Table 1.9 have been derived from Eqs. 1.36 and 1.37.

1.1.4.3 Wedge-Shaped Aquifer: Constant-Head and Impermeable
Boundaries

Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
4pT

Xn
j¼0;2;4;...

�1ð Þj=2 W
q2j
4at

 !
þW

q2jþ 1

4at

 !" #" #
; ð1:39Þ

where q0 ¼ r.

Steady-State Flow Equation

sm ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð1:40Þ

r0 ¼
Yn

j¼0;4;8;...

qjþ 2qjþ 3

qjqjþ 1
: ð1:41Þ

Graphic-Analytical Processing
The graphic-analytical processing is based on Eqs. 1.39 and 1.40 similar to the
conditions on the constant-head boundaries (Table 1.8), where the reduced distance
is evaluated by Eq. 1.41 and the type curve is constructed taking into account the
relationships

W0 uð Þ ¼
Xn

j¼0;2;4;...

�1ð Þj=2 W ur0j

 �

þW ur0jþ 1


 �h i
; r00 ¼ 1:

Table 1.9 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Straight line
T ¼ 0:183ðnþ 1ÞQ

C
, lg a ¼ A=Cþ lg

r02

2:25

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

s1 � s2ð Þ— lg t Horizontal straight line
T ¼ Q nþ 1ð Þ

2p � A ln
r02
r01

W0 uð Þ ¼ W uð Þþ
Pn

j¼1W ur0j

 �

; r0j ¼ qj=r
� �2

1.1 Fully Penetrating Well 19



1.1.5 U-Shaped Aquifer

The basic assumptions and conditions (Fig. 1.7) are:

• the aquifer is isotropic and bounded in the horizontal plane;
• the boundaries are two parallel semi-infinite linear boundaries and a bounded

linear boundary perpendicular to the parallel boundaries.

Six variants of boundary conditions are considered (see Fig. A3.7): (1) all
boundaries are of constant-head type; (2) the parallel boundaries are of the
constant-head type, and the perpendicular boundary is impermeable; (3) the parallel
boundaries are impermeable, and the perpendicular boundary is of constant-head
type; (4) all boundaries are impermeable; (5) the parallel boundaries are of the
constant-head and impermeable types, and the perpendicular boundary is of the
constant-head type; and (6) the parallel boundaries are of the constant-head and
impermeable types, and the perpendicular boundary is impermeable.

To solve the problem, the image-well method is used: the image wells form two
infinite rows of wells (for the distances to the image wells and the signs of their
discharges, see Fig. A3.8).

Basic Analytical Relationships
Transient Flow Equations

1. Parallel constant-head boundaries (see Fig. A3.7a, b):

s ¼ Q
4pT

W
r2

4at

� �
þ
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i

� �2
4at

" #
�W

q2U
4at

� �(

�
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
Ui

� �2
4at

" #)
; ð1:42Þ

where q j
i ; q

j
Ui are distances from the observation well to the jth image well of the first

(q j
i ) and second row (q j

Ui), reflected about the left (i = 1) or right (i = 2) boundary
(see Fig. A3.8): they are determined by Eqs. A3.3, A3.4, A3.13 and A3.14, m; qU is

Fig. 1.7 U-shaped confined
aquifer: a cross-section and
b planar view. L is distance
between parallel boundaries;
LUw; LUp are the distances
from the pumping and
observation wells to the
perpendicular boundary,
respectively
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the distance from the pumping to the image well reflected about the perpendicular
boundary: it is determined by Eq. A3.15, m; n is the number of reflections from the
same boundary (see comment to Eq. 1.17); the sign “±”: “+” is assigned to
impermeable-boundary conditions on the perpendicular boundary, and “−” to the
constant-head boundary.

2. Parallel impermeable boundaries (see Fig. A3.7c, d):

s ¼ Q
4pT

W
r2

4at

� �
þ
Xn
j¼1

X2
i¼1

W
q j
i

� �2
4at

" #
�W

q2U
4at

� �
�
Xn
j¼1

X2
i¼1

W
q j
Ui

� �2
4at

" #" #
:

ð1:43Þ

3. Parallel constant-head and impermeable boundaries (see Fig. A3.7e, f):

s ¼ Q
4pT

W
r2

4at

� �
þ
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Ui

� �2
4at

 !
�
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�1ð Þj=2
X2
i¼1
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Ui
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4at

 !#
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ð1:44Þ

Steady-State Flow Equations
1. Parallel constant-head boundaries (see Fig. A3.7a, b):
(a) the solution based on the superposition principle is:

sm ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð1:45Þ

where, for the perpendicular constant-head boundary:

r0 ¼ qU
r

Yn�1

j¼1;3;...

q j
1q

j
2q

jþ 1
U1 qjþ 1

U2

qjþ 1
1 qjþ 1

2 q j
U1q

j
U2

; ð1:46Þ

and for the impermeable boundary:

r0 ¼ qn1q
n
U1

rqU

Yn�1

j¼1;3;...

q j
1q

j
2q

j
U1q

j
U2

qjþ 1
1 qjþ 1

2 qjþ 1
U1 qjþ 1

U2

; ð1:47Þ

(b) Green’s function solution for the constant-head perpendicular boundary
(Muskat 1937):
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sm ¼ Q
4pT

ln

cosh
p LUp � LUw
� �

L
� cos

p Lp þ Lw
� �

L

cosh
p LUp � LUw
� �

L
� cos

p Lp � Lw
� �

L

�

�
cosh

p LUp þ LUw
� �

L
� cos

p Lp � Lw
� �

L

cosh
p LUp þ LUw
� �

L
� cos

p Lp þ Lw
� �

L

2
666666666664

3
777777777775
; ð1:48Þ

where L is the distance between the parallel boundaries, m; Lp; Lw are the distances
from the observation and pumping wells to the parallel boundary, respectively, m;
LUp; LUw are the distances from the observation and pumping wells to the per-
pendicular boundary, respectively, m.

2. Parallel impermeable boundaries (see Fig. A3.7c, d):
(a) for the perpendicular constant-head boundary:

sm ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð1:49Þ

r0 ¼ qU
r

Yn
j¼1

q j
U1q

j
U2

q j
1q

j
2

; ð1:50Þ

(b) for the condition when all three boundaries are impermeable, there is no
steady state.

3. Parallel constant-head and impermeable boundaries (see Fig. A3.7e, f):

sm ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð1:51Þ

where, for a perpendicular constant-head boundary:

r0 ¼ qn1qU
rqnU1

Yn�3
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1 qjþ 1

2 qjþ 2
2 qjþ 2

U1 qjþ 3
U1 q j

U2q
jþ 3
U2

qjþ 2
1 qjþ 3

1 q j
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2 q j
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; ð1:52Þ

and for an impermeable boundary:

r0 ¼ qn1q
n
U1

rqU

Yn�3

j¼1;5;9...

q j
1q

jþ 1
1 qjþ 1

2 qjþ 2
2 q j
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U1 q j
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: ð1:53Þ

Graphic-Analytical Processing
The relationships given in Table 1.10 have been derived from Eqs. 1.42–1.45, 1.49,
and 1.51.
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1.1.6 Rectangular Aquifer

The basic assumptions and conditions (Fig. 1.8) are:

• the aquifer is isotropic and bounded in the horizontal plane;
• the boundaries: the domain under consideration is rectangular, bounded by

straight-line segments crossing at right angles.

Six variants of boundary conditions are considered (see Fig. A3.9): (1) two
parallel constant-head boundaries and two parallel impermeable boundaries; (2) all
boundaries are constant-head; (3) all boundaries are impermeable; (4) three
constant-head boundaries and one impermeable boundary; (5) two perpendicular

Table 1.10 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
T ¼ Q

2p � A ln r0

lg s— lg t
Type curve: lgW0 uð Þ— lg

1
u T ¼ Q

4p10D
, a ¼ r210E

4

lg s— lg
t
r2

The same
T ¼ Q

4p10D
, a ¼ 10E

4

s1 � s2ð Þ— lg t Horizontal straight linea
T ¼ Q

2p � A ln
r01
r02

aBased on drawdown values for steady-state flow period
For parallel constant-head boundaries:

W0 uð Þ ¼ W uð Þþ
Pn

j¼1 �1ð Þ j
P2

i¼1W ur0ji
� ��W ur0U

� ��Pn

j¼1 �1ð Þ j
P2

i¼1W ur0jUi
� �

;

for impermeable boundaries:W0 uð Þ ¼ W uð Þþ
Pn

j¼1

P2

i¼1W ur0ji
� ��Wður0UÞ �

Pn

j¼1

P2

i¼1W ur0jUi
� �

for constant-head and impermeable boundaries:

W0 uð Þ ¼
W uð Þþ

Xn

j¼1;3;...

X2

i¼1
�1ð Þðjþ 2i�1Þ=2W ur0ji

� �þ Xn

j¼2;4;...
�1ð Þj=2

X2

i¼1
W ur0ji
� ��

�W ur0U
� ��Xn

j¼1;3;...

X2

i¼1
�1ð Þðjþ 2i�1Þ=2W ur0jUi

� ��Xn

j¼2;4;...
�1ð Þj=2

X2

i¼1
W ur0jUi
� �

8><
>:

9>=
>;;

r0ji ¼ q j
i =r

� �2
, r0U ¼ qU=rð Þ2, r0jUi ¼ q j

Ui=r
� �2

, r0 is determined with the use of Eqs. 1.46, 1.47,
1.50, 1.52, and 1.53, depending on the type of boundary condition
Plus–minus sign (±)—the sign “+” is assigned to impermeable-boundary conditions on the
perpendicular boundary and “−” to the constant-head boundary

Fig. 1.8 Rectangular
confined aquifer:
a cross-section and b planar
view. L; LU are distances
between parallel boundaries
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constant-head boundaries and two impermeable boundaries; and (6) three imper-
meable boundaries and one constant-head boundary.

Image wells are not used in the solutions below.

Basic Analytical Relationships
Transient and Steady-State Flow Equations (Chan et al. 1976; Latinopoulos 1982)

1. Two parallel constant-head boundaries and two parallel impermeable
boundaries (see Fig. A3.9a):

s¼ sm� 2Q
LLUT

X1
i¼1

exp �ata2i
� �
a2i

sin aiLp
� �

sin aiLwð Þ�

� 4Q
LLUT

X1
i¼1

X1
j¼1

exp �at a2i þb2j


 �h i
a2i þb2j

sin aiLp
� �

sin aiLwð Þcos bjLUp
� �

cos bjLUw
� �

;

ð1:54Þ

where sm is drawdown in the steady-state flow period:

sm ¼ Q
LT

X1
i¼1

sin aiLp
� �

sin aiLwð Þ
ai sinh aiLUð Þ �

� cosh ai LU � LUw � LUp
�� ��� �
 �þ cosh ai LU � LUw � LUp

� �
 �� �
: ð1:55Þ

2. All boundaries are constant-head (see Fig. A3.9b):

s¼sm� 4Q
LLUT

X1
i¼1

X1
j¼1

exp �at a2i þb2j


 �h i
a2i þb2j

sin aiLp
� �

sin aiLwð Þsin bjLUp
� �

sin bjLUw
� �

;

ð1:56Þ

where sm is the drawdown in the steady-state flow period:

sm ¼ Q
LT

X1
i¼1

sin aiLp
� �

sin aiLwð Þ
ai sinh aiLUð Þ �

� cosh ai LU � LUw � LUp
�� ��� �
 �� cosh ai LU � LUw � LUp

� �
 �� �
: ð1:57Þ

3. All boundaries are impermeable (see Fig. A3.9c):

s¼ sm� 2Q
LLUT

X1
i¼1

exp �ata2i
� �
a2i

cos aiLp
� �

cos aiLwð Þ�
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; ð1:58Þ
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where sm is the drawdown in the quasi-steady-state flow period:

sm ¼ Qat
LLUT

þ QLU
2LT

2
3
� LUw � LUp
�� ��þ LUw þ LUp

LU
þ L2Uw þ L2Up

L2U

 !
þ

þ Q
LT
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i¼1

cos aiLp
� �

cos aiLwð Þ
ai sinh aiLUð Þ �

� cosh ai LU � LUw � LUp
�� ��� �
 �þ cosh ai LU � LUw � LUp

� �
 �� �
: ð1:59Þ

4. Three constant-head boundaries and one impermeable boundary (see
Fig. A3.9d):

s ¼ sm � 4Q
LLUT

X1
i¼0

X1
j¼1

exp �at a02i þ b2j


 �h i
a02i þ b2j

�

� cos a0iðL� LpÞ
� �

cos a0iðL� LwÞ
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� �

sin bjLUw
� �

; ð1:60Þ

where sm is the drawdown in the steady-state flow period:

sm ¼ Q
LUT

X1
j¼1

sin bjLUp
� �

sin bjLUw
� �

bj cosh bjL
� � �

� sinh bj L� Lw � Lp
�� ��� �
 �� sinh bj L� Lw � Lp

� �
 �� �
: ð1:61Þ

5. Two perpendicular constant-head boundaries and two impermeable bound-
aries (see Fig. A3.9e):

s ¼ sm � 4Q
LLUT

X1
i¼0

X1
j¼0

exp �at a02i þ b02j

 �h i

a02i þ b02j
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 �

; ð1:62Þ

where sm is the drawdown in the steady-state flow period:

sm ¼ Q
LT

X1
i¼0

cos a0iðL� LpÞ
� �

cos a0iðL� LwÞ
� �

a0i cosh a0iLUð Þ �

� sinh a0i LU � LUw � LUp
�� ��� �
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� �
 �� �
: ð1:63Þ
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6. Three impermeable boundaries and one constant-head boundary (see
Fig. A3.9f):

s ¼ sm � 2Q
LLUT

X1
i¼0

exp �ata02i

 �
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� �
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� 4Q
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 �h i
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�

� cos a0iðL� LpÞ
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 �
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 �

; ð1:64Þ

where sm is the drawdown in the steady-state flow period:

sm ¼ Q
LT

X1
i¼0

cos a0iðL� LpÞ
� �

cos a0iðL� LwÞ
� �

a0i sinh a0iLUð Þ �

� cosh a0i LU � LUw � LUp
�� ��� �
 �þ cosh a0i LU � LUw � LUp

� �
 �� �
: ð1:65Þ

In all solutions (Eqs. 1.54–1.65):
ai ¼ ip=L, bj ¼ jp=LU , a0i ¼ iþ 0:5ð Þp=L, b0j ¼ jþ 0:5ð Þp=LU , L; LU are the

distances between parallel boundaries, m; Lw; Lp and LUw; LUp are the distances
from the pumping and observation wells to the boundaries of the rectangular aquifer
(see Fig. 1.8), m. In the case of combined boundary conditions, incorporating
constant-head and impermeable parallel boundaries (see Fig. A3.9d–f), the dis-
tances from wells to the boundary are taken to be those to the constant-head
boundary.

The relationships for the drawdown in a rectangular aquifer can also be con-
structed with the use of Eq. (1.1) by summing the values of the drawdown due to
image wells (Ferris et al. 1962).

1.1.7 Circular Aquifer

The basic assumptions and conditions (Fig. 1.9) are:

• the aquifer is isotropic and bounded in the horizontal plane;
• the aquifer has a circular boundary of groundwater flow along its outer contour;
• the pumping well is located either in the center of the circular aquifer (con-

centric) or off-center.

One of two boundary conditions is specified on the outer contour of the aquifer
(see Fig. A3.10): (1) constant-head boundary or (2) impermeable boundary.
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Basic Analytical Relationships
Transient Flow Equations

1. The pumping well is located in the center of a circular aquifer (Fig. 1.9a, c)
1.1. The outer contour of the aquifer is a constant-head boundary (Bochever and

Verigin 1961):

s ¼ Q
2pT

ln
R
r
� 2

X1
n¼1

1
x2nJ

2
1 xnð Þ J0 xn

r
R


 �
exp �x2n

at
R2


 �" #
; ð1:66Þ

where xn are positive roots of equation J0 xnð Þ ¼ 0 (see Appendix 7.15); R is the
radius of a circular aquifer, m.

1.2. Impermeable contour of the aquifer (Bochever and Verigin 1961)

s ¼ Q
2pT

2
at
R2 þ r2

2R2 þ ln
R
r
� 2
3
� 2

X1
n¼1

1
x2n;1J

2
0 xn;1
� � J0 xn;1

r
R


 �
exp �x2n;1

at
R2


 �" #

ð1:67Þ

where xn;1 are positive roots of equation J1 xn;1
� � ¼ 0 (see Appendix 7.15).

2. The pumping well is located off-center in a circular aquifer (Fig. 1.9b, d)
2.1. The outer contour of the aquifer is a constant-head boundary (Hantush and

Jacob 1960):

Fig. 1.9 Circular confined aquifer. a, b Cross-sections, c, d planar views; a, c the pumping well is
in the center or b, d shifted with respect to the center. R is the radius of the circle
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s ¼ Q
2pT

ln
R
r
� 2

X1
n¼1

exp �x2n at=R
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� �
x2nJ

2
1 xnð Þ J0 xn
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� 4
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2
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� � cos mhð ÞJm xn;m
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R
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Jm xn;m

Lp
R

� �9=
;; ð1:68Þ

cos h ¼ L2w þ L2p � r2

2LwLp
; ð1:69Þ

where Lw and Lp are the distances from the pumping well and the observation well
to the center of the circular aquifer, m; xn;m are positive roots of equation
Jm xn;m
� � ¼ 0 (see Appendix 7.15); Jm �ð Þ is Bessel functions of the first kind of the

order m (see Appendix 7.13); h is the angle between the vectors from the center of
the circular aquifer to the pumping and observation well, respectively (Fig. 1.9d),
degree: this angle is found from (Eq. 1.69).

The solution (Eq. 1.68) was derived from solution (Eq. 3.29) for a leaky aquifer
at B ! 1.

2.2. Impermeable contour of the aquifer (Bochever 1968):

s ¼ Q
2pT

2
at
R2 þ ln
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� 2
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3
5;
ð1:70Þ

r	 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2p

R2

R2 � L2w
R2 � L2w

R2 þ r2

R2

s
exp

3
4
� L2p � L2w

2R2

 !
; ð1:71Þ

where yn;m are positive roots of equation J0m yn;m
� � ¼ 0 (see Appendix 7.15).

Steady-State Flow Equations
The steady-state flow period occurs in the presence of a constant-head boundary on
the outer contour of the circular aquifer.

1. The pumping well is located in the center of the circular aquifer (Fig. 1.9a, c).
1.1. The drawdown in the observation well (Jacob 1949; Hantush and Jacob 1960)

sm ¼ Q
2pT

ln
R
r
: ð1:72Þ
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1.2. The drawdown in the pumping well (Muskat 1937; Jacob 1949)

smw ¼ Q
2pT

ln
R
rw

: ð1:73Þ

2. The pumping well is located off-center in a circular aquifer (Fig. 1.9b, d).
2.1. The drawdown in the observation well (Hantush and Jacob 1960)

sm ¼ Q
4pT

ln
Lw
rR

� �2 R4

L2w
þ L2p � 2

LpR2

Lw
cos h

� �" #
¼

¼ Q
4pT

ln
R2

r2
þ L2wL

2
p

r2R2 � L2w þ L2p � r2

r2

 !
; ð1:74Þ

where the angle h (Fig. 1.9d) can be readily found from the cosine theorem given
the distances r; Lw; Lp (Eq. 1.69). The solution (Eq. 1.74) has been derived from
the equation (Hantush and Jacob 1960)

sm ¼ Q
2pT

ln
R
r
�
X1
n¼1

1
n

LwLp=R
2� �n

cos nh

" #
; ð1:75Þ

which has a more complex form, but can also be applied to this case. An alternative
solution with the distance to the image well taken into account is given in
(Shchelkachev and Lapuk 1949):

sm ¼ Q
2pkm

ln
Lwq
Rr

; ð1:76Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qw þ Lwð Þ2 þ L2p � qw þ Lwð Þ L

2
w þ L2p � r2

Lw

s
; qw ¼ R2 � L2w

Lw
: ð1:77Þ

2.2. The drawdown in the pumping well (Hantush and Jacob 1960)

smw ¼ Q
2pT

ln
R2 � L2w
rwR

: ð1:78Þ

1.2 Partially Penetrating Well: Point Source

The pumping and observation wells are partially penetrating. The screen length of
the pumping well is much less than the thickness of the aquifer.

This section gives transient, quasi-steady-state, and steady-state analytical
solutions for isotropic aquifers that are infinite, semi-infinite, and bounded in the
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horizontal plane or thickness. To take into account the vertical anisotropy, the flow
equations are to be transformed:

• the hydraulic conductivity k is to be changed to the horizontal hydraulic con-
ductivity kr;

• the hydraulic diffusivity a is to be changed to the vertical hydraulic diffusivity
az, where az ¼ kz=Ss (Ss is specific storage, 1/m);

• the distance from the pumping well r is to be replaced by a corrected distance vr
(where v ¼ ffiffiffiffiffiffiffiffiffiffi

kz=kr
p

is the coefficient of vertical anisotropy, dimensionless;
kr; kz are hydraulic conductivities in the horizontal and vertical directions,
respectively, m/d; the same change is to be made for all horizontal distances
characterizing the position of wells relative to boundaries in aquifers
semi-infinite or bounded in horizontal plane.

For example, the solution (Eq. 1.81) for an aquifer with vertical anisotropy will
be written as

s ¼ Q
4p krda

erfc
da

2
ffiffiffiffiffiffi
azt

p ; ð1:79Þ

where da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrð Þ2 þ z2

q
; r is the horizontal distance between the pumping and

observation wells, m; z is the vertical distance between the screen centers of the
pumping and observation wells (Fig. 1.10), m. When the vertical displacement is
zero (z ¼ 0), Eq. 1.79 becomes simpler

s ¼ Q
4p

ffiffiffiffiffiffiffiffi
krkz

p
r
erfc

vr
2
ffiffiffiffiffiffi
azt

p : ð1:80Þ

The transient solutions given in this section can be used to evaluate the hydraulic
conductivity (k) and hydraulic diffusivity (a) of an isotropic aquifer or the hori-
zontal hydraulic conductivity (kr), vertical hydraulic conductivity (kz), and vertical
hydraulic diffusivity (az) of an anisotropic aquifer. Tables 1.11, 1.12, 1.13, and 1.14
give relationships for evaluating the hydraulic characteristics of an isotropic aquifer
by graphic-analytical methods.

The drawdown can be evaluated at any point of the aquifer.

1.2.1 Aquifer Infinite in the Horizontal Plane and Thickness

The basic assumptions and conditions (Fig. 1.10) are:

• the aquifer is anisotropic in the vertical plane;
• there are no boundaries in the vertical (aquifer with an infinite thickness) and

horizontal (aquifer of infinite lateral extent) planes.
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Typical plots of drawdown in an observation well in a horizontally isotropic and
vertically anisotropic aquifer are given in Fig. 12.15.

Basic Analytical Relationships
Transient Flow Equation (Carslow and Jaeger 1959)

s ¼ Q
4pkd

erfc
d

2
ffiffiffiffi
at

p ; ð1:81Þ

where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
is the distance between screen centers in the pumping and

observation wells (Fig. 1.10), m.

Quasi-Steady-State Flow Equation

s ¼ Q
4pk

1
d
� 1ffiffiffiffiffiffiffi

pat
p

� �
: ð1:82Þ

In the plot of observation s� 1=
ffiffi
t

p
(see Fig. 12.15b), the quasi-steady-state

period is represented by a linear segment. The beginning of this period is evaluated
via the argument of the complementary error function erfc uð Þ (see Appendix 7.12):
for u� 0:1, Eq. 1.81 is approximated by a straight line (Eq. 1.82).

Steady-State Flow Equation

sm ¼ Q
4pkd

: ð1:83Þ

Graphic-Analytical Processing
The relationships given in Table 1.11 have been derived from Eqs. 1.81–1.83.

Fig. 1.10 A point source in a confined aquifer infinite in the horizontal plane and thickness.
a Three-dimensional representation; b cross-section
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1.2.2 A Point Source in an Aquifer Semi-infinite
in the Horizontal Plane or Thickness

The basic assumptions and conditions are:

• the aquifer is vertically anisotropic and semi-infinite in the vertical or horizontal
plane;

• the boundary is an infinite straight line in either the vertical or horizontal plane.

Two variants of boundary conditions are considered (Fig. 1.11): (1) a
constant-head boundary in the horizontal plane and (2) an impermeable boundary in
the vertical or horizontal plane.

Table 1.11 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
k ¼ Q b

4p � d � A
lg s— lg t

Type curve: lg erfc uð Þ— lg
1
u2 k ¼ Q

4p � d � 10D, a ¼ d210E

4

s—
1ffiffi
t

p Straight line
k ¼ Q

4p � d � A, a ¼ A=Cð Þ2
p

d2

s—
1
d

The same
k ¼ Q

4p � C, a ¼ C=Að Þ2
p � t

ds—
dffiffi
t

p The same
k ¼ Q

4p � A, a ¼ A=Cð Þ2
p

lg dsð Þ— lg
t
d2 Type curve: lg erfc uð Þ— lg

1
u2 k ¼ Q

4p � 10D, a ¼ 10E

4

s1 � s2ð Þ— lg t Horizontal straight line
k ¼ Q

4p � A
1
d1

� 1
d2

� �
b

aBased on drawdown values for a steady-state flow period
bIn the case of a vertically anisotropic aquifer, at z ¼ 0, the hydraulic conductivity is replaced by
an integral parameter

ffiffiffiffiffiffiffiffi
krkz

p
(see Eq. 1.80)

Fig. 1.11 Schematic cross-sections of a semi-infinite aquifer. a Constant-head boundary in the
horizontal plane; b impermeable boundary in the horizontal plane; c top of the aquifer as a
boundary in the vertical plane; d bottom of the aquifer as a boundary in the vertical plane
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1.2.2.1 Aquifer Semi-infinite in the Horizontal Plane: Constant-Head
Boundary

The basic assumptions and conditions (Figs. 1.11a and 1.12) are:

• the general conditions for a semi-infinite aquifer (see the beginning of
Sect. 1.2.2);

• a constant-head boundary lies in the horizontal plane left or right of the pumping
and observation wells;

• the aquifer is infinite in thickness.

To solve the problem, the image-well method is used: a single image well with a
discharge equal to that of the pumping well with an opposite sign (see Fig. A3.11a).

Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
4pk

1
d
erfc

d

2
ffiffiffiffi
at

p � 1
q
erfc

q

2
ffiffiffiffi
at

p
� �

; ð1:84Þ

where q is the distance between the observation and image wells (see Fig. A3.11a
and Eq. A3.16), m.

Steady-State Flow Equation

sm ¼ Q
4pk

q� dð Þ
dq

: ð1:85Þ

Graphic-Analytical Processing
The relationships given in Table 1.12 have been derived from Eqs. 1.84 and 1.85.

Fig. 1.12 A point source in
a confined aquifer of infinite
thickness with a
constant-head boundary in
the horizontal plane: a
three-dimensional view
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1.2.2.2 Aquifer Semi-infinite in the Horizontal Plane or Thickness:
Impermeable Boundary

The basic assumptions and conditions (Figs. 1.11b–d and 1.13) are:

• the general conditions for a semi-infinite aquifer (see the beginning of
Sect. 1.2.2);

• an impermeable boundary may lie in the cross-section (the top or the bottom of
the aquifer) or in the horizontal plane (to the left or right of the wells);

• the aquifer is semi-infinite in thickness for a boundary in the vertical plane and
unlimited in thickness for a boundary in the horizontal plane.

To solve the problem, the image-well method is used: an image well with a
discharge equal to that of the pumping well (see Fig. A3.11).

Table 1.12 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
k ¼ Q

4p � A r0

lg s— lg t
Type curve: lg erfc0 uð Þ— lg

1
u2 k ¼ Q

4pd10D
, a ¼ d210E

4

lg dsð Þ— lg
t
d2

The same
k ¼ Q

4p � 10D, a ¼ 10E

4

s1 � s2ð Þ— lg t Horizontal straight line
k ¼ Q

4p � A r01 � r02
� �

aBased on the drawdown values for steady-state flow period

erfc0 uð Þ ¼ erfc uð Þ � 1
r0
erfc ur00ð Þ; r00 ¼ q=d; r0 ¼ q� d

dq

Fig. 1.13 A point source in a confined aquifer with an impermeable boundary in the vertical or
horizontal plane: three-dimensional views. a The boundary is the top of the aquifer; b the
boundary is the bottom of the aquifer; c the boundary is in the horizontal plane
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Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
4pk

1
d
erfc

d

2
ffiffiffiffi
at

p þ 1
q
erfc

q

2
ffiffiffiffi
at

p
� �

; ð1:86Þ

where q is the distance between the observation well and an image well reflected
about the boundary in the vertical (see Eq. A3.17) or the horizontal (see Eq. A3.16)
plane (see Fig. A3.11), m.

Quasi-Steady-State Flow Equation

s ¼ Q
4pk

dþ q
dq

� 2ffiffiffiffiffiffiffi
pat

p
� �

: ð1:87Þ

Steady-State Flow Equation

sm ¼ Q
4pk

dþ q
dq

: ð1:88Þ

Graphic-Analytical Processing
The relationships given in Table 1.13 have been derived from Eqs. 1.86–1.88.

1.2.3 A Point Source in an Aquifer Bounded
in the Horizontal Plane or Thickness

The basic assumptions and conditions (Fig. 1.14) are:

• the aquifer is vertically anisotropic, bounded in thickness or in the horizontal plane;
• the boundaries are two parallel linear, infinite, in the vertical or horizontal plane.

Table 1.13 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
k ¼ Q

4p � A r0

s—
1ffiffi
t

p Straight line
k ¼ Q

4p � A r0, a ¼ 4
p

A
Cr0

� �

lg s— lg t
Type curve: lg erfc0 uð Þ— lg

1
u2 k ¼ Q

4p � d � 10D, a ¼ d210E

4

lg dsð Þ— lg
t
d2

The same
k ¼ Q

4p � 10D, a ¼ 10E

4

s1 � s2ð Þ— lg t Horizontal straight line
k ¼ Q

4p � A r01 � r02
� �

abased on the drawdown values for a steady-state flow period

erfc0 uð Þ ¼ erfc uð Þþ 1
r0
erfc ur00ð Þ, r00 ¼ q=d, r0 ¼ qþ d

dq
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Four variants of boundary conditions are considered (Fig. 1.15): (1) two
impermeable boundaries in the vertical plane; (2) two constant-head boundaries in
the horizontal plane; (3) two impermeable boundaries in the horizontal plane; and
(4) two boundaries in the horizontal plane with mixed boundary conditions:
constant-head and impermeable boundaries.

To solve the problem, the image-well method is used: image wells form an
infinite row (for the signs of discharges and the distances to the image wells, see
Fig. A3.12b, c).

Basic Analytical Relationships
Transient Flow Equations

1. Two constant-head boundaries (Fig. 1.15b):

s ¼ Q
4pk

1
d
erfc

d

2
ffiffiffiffi
at

p þ
Xn
j¼1

�1ð Þ j
X2
i¼1

1

q j
i

erfc
q j
i

2
ffiffiffiffi
at

p
" #

: ð1:89Þ

Fig. 1.14 A three-dimensional view of a point source in a confined a aquifer bounded in
thickness and b a strip aquifer of infinite thickness

Fig. 1.15 Schematic cross-section of a bounded aquifer. a Impermeable boundaries in the vertical
plane; b constant-head boundaries in the horizontal plane; c impermeable boundaries in the
horizontal plane; and d mixed boundary conditions in the horizontal plane
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2. Two impermeable boundaries (Fig. 1.15a, c):

s ¼ Q
4pk

1
d
erfc

d

2
ffiffiffiffi
at

p þ
Xn
j¼1

X2
i¼1

1

q j
i

erfc
q j
i

2
ffiffiffiffi
at

p
" #

: ð1:90Þ

3. Mixed boundary conditions—constant-head and impermeable boundaries
(Fig. 1.15d):

s ¼ Q
4pk

1
d
erfc

d

2
ffiffiffiffi
at

p þ
Xn

j¼1;3;...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2

q j
i

erfc
q j
i

2
ffiffiffiffi
at

p þ

þ
Xn

j¼2;4;...

�1ð Þj=2
X2
i¼1

1

q j
i

erfc
q j
i

2
ffiffiffiffi
at

p

2
666664

3
777775; ð1:91Þ

where q j
i is the distance from the observation well to the jth image well reflected

from the left/top (i ¼ 1) or the right/bottom (i ¼ 2) boundary (see Fig. A3.12), are
determined by Eqs. A3.18 and A3.20, and Eqs. A3.19 and A3.21, m.

Steady-State Flow Equations

1. Two constant-head boundaries (Fig. 1.15b):

sm ¼ Q
4pk

1
d
þ
Xn
j¼1

�1ð Þ j
X2
i¼1

1

q j
i

" #
: ð1:92Þ

2. Mixed boundary conditions—constant-head and impermeable boundaries
(Fig. 1.15d):

sm ¼ Q
4pk

1
d
þ

Xn
j¼1;3;...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2

q j
i

þ
Xn

j¼2;4;...

�1ð Þj=2
X2
i¼1

1

q j
i

" #
: ð1:93Þ

Graphic-Analytical Processing
The relationships given in Table 1.14 have been derived from Eqs. 1.89–1.93.

1.2 Partially Penetrating Well: Point Source 37



1.3 Partially Penetrating Well: Linear Source

The pumping and observation wells are partially penetrating. The screen length of
the pumping well is less than the aquifer thickness.

Here we consider drawdown values obtained during pumping tests in an
observation well and a piezometer (a small-diameter tube, receiving water through
its bottom hole). The drawdown in the observation well is averaged over its screen
length. It is generally less than that in the piezometer.

This section gives transient, quasi-steady-state, and steady-state analytical
solutions for isotropic aquifers that are infinite, semi-infinite, and bounded in the
horizontal plane or thickness. To take into account the vertical anisotropy of the
aquifer requires some changes in the flow equations (see the beginning of
Sect. 1.2). Of greatest practical interest are solutions for a linear source in an aquifer
bounded in the vertical plane (see Sect. 1.3.3.1).

Transient solutions are used to determine the hydraulic conductivity (k) and
hydraulic diffusivity (a) of an isotropic aquifer or the horizontal (kr) and vertical
(kz) hydraulic conductivities and, depending on the solution, the vertical or hori-
zontal hydraulic diffusivity of an anisotropic aquifer. For Moench solutions (see
Sect. 1.3.3), the hydraulic conductivity and the thickness of the wellbore skin
(kskin; mskin) can also be evaluated.

Table 1.14 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
k ¼ Q

4p � A r0 (2)

lg s— lg t
Type curve: lg erfc0 uð Þ— lg

1
u2 k ¼ Q

4p � d � 10D, a ¼ d210E

4

lg dsð Þ— lg
t
d2

The same
k ¼ Q

4p � 10D, a ¼ 10E

4

s1 � s2ð Þ— lg t Horizontal straight line
k ¼ Q

4p � A r01 � r02
� �

aBased on the drawdown values for steady-state flow period (this method will not work for
aquifers with impermeable boundaries)
Two constant-head boundaries:

erfc0 uð Þ ¼ erfc uð Þþ
Xn

j¼1
�1ð Þ j

X2

i¼1

1

r0ji
erfc ur0ji
� �

; r0 ¼ 1
d
þ
Xn

j¼1
�1ð Þ j

X2

i¼1

1

q j
i

Two impermeable boundaries:

erfc0 uð Þ ¼ erfc uð Þþ
Xn

j¼1

X2

i¼1

1

r0ji
erfc ur0ji
� �

; r0 ¼ 1
d
þ
Xn

j¼1

X2

i¼1

1

q j
i

Mixed boundary conditions—constant-head and impermeable boundaries:

erfc0 uð Þ ¼ erfc uð Þþ
Xn

j¼1;3;...

X2

i¼1

�1ð Þðjþ 2i�1Þ=2

r0ji
erfc ur0ji
� �þ Xn

j¼2;4;...
�1ð Þj=2

X2

i¼1

1

r0ji
erfc ur0ji
� �

,

r0 ¼ 1
d
þ
Xn

j¼1;3;...

X2

i¼1

�1ð Þðjþ 2i�1Þ=2

q j
i

þ
Xn

j¼2;4;...
�1ð Þj=2

X2

i¼1

1

q j
i

, r0ji ¼ q j
i =d
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1.3.1 Aquifer Infinite in the Horizontal Plane and Thickness

The basic assumptions and conditions (Fig. 1.16) are:

• the aquifer is anisotropic in the vertical plane;
• there are no boundaries in the vertical (aquifer with an infinite thickness) and

horizontal (aquifer of infinite lateral extent) planes.

The drawdown is determined in an observation well or in a piezometer, both
located at any point of the aquifer.

Basic Analytical Relationships
Transient Flow Equations

1. The average drawdown in an observation well (Hantush 1961b):

s ¼ Qr
8pklwlp

Fl
r2

4at
;
zw1 þ zp1

r
;
zw1 � zp1

r

� �
� Fl

r2

4at
;
zw2 þ zp1

r
;
zw2 � zp1

r

� �
þ

�

þ Fl
r2

4at
;
zw2 þ zp2

r
;
zw2 � zp2

r

� �
� Fl

r2

4at
;
zw1 þ zp2

r
;
zw1 � zp2

r

� ��
; ð1:94Þ

Fl u;b1;b2ð Þ ¼ b1M u;b1ð Þ � b2M u;b2ð Þþ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þb22

q
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb22
� �

u
q

�

� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þb21

q
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb21
� �

u
q

þ2
exp � 1þb21

� �
u


 �� exp � 1þb22
� �

u

 �

ffiffiffiffiffiffi
pu

p ;

ð1:95Þ

where lp; lw are the screen lengths of the observation and pumping wells, respec-
tively, m; zp1; zp2; zw1; zw2 are vertical distances, which determine the positions of
the observation and pumping wells relative to the aquifer top (see Fig. 1.22b), m;
M u; bð Þ is a special function (see Appendix 7.3).

Fig. 1.16 Linear source in a confined aquifer infinite in the horizontal plane and thickness. a A
three-dimensional view; b a cross-section with an observation well and a piezometer
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2. The drawdown in the piezometer (Hantush 1961a, b):

s ¼ Q
8pklw

M
r2

4at
;
zw1 þ LTp

r

� �
�M

r2

4at
;
zw2 þ LTp

r

� �
þ

þ M
r2

4at
;
zw1 � LTp

r

� �
�M

r2

4at
;
zw2 � LTp

r

� �
2
664

3
775; ð1:96Þ

where LTp is the vertical distance from aquifer top to the open part of the piezo-
menter (see Fig. 1.22b), m.

3. The drawdown in the piezometer (simplified solution) (Mironenko and
Shestakov 1978):

s ¼ Q
8pklw

M
r2

4at
;
0:5lw þ z

r

� �
þM

r2

4at
;
0:5lw � z

r

� �� �
; ð1:97Þ

where z is the vertical distance between the screen centers of the pumping and
observation wells (Fig. 1.16), m

Steady-State Flow Equation (Girinskiy 1950; Babushkin 1954)

sm ¼ Q
4pklw

arcsinh
0:5lw � z

r
þ arcsinh

0:5lw þ z
r

� �
¼

¼ Q
4pklw

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ 0:5lwð Þ2 þ r2

q
þ zþ 0:5lwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� 0:5lwð Þ2 þ r2
q

þ z� 0:5lwð Þ
: ð1:98Þ

Graphic-Analytical Processing
The relationships given in Table 1.15, have been derived from Eqs. 1.94, 1.96–1.98.

Table 1.15 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
k ¼ Q

4p � lw � A r0

lg s— lg t
Type curveb: lg f— lg

1
u k ¼ Q

8p � lw � 10D, a ¼ r210E

4

s1 � s2ð Þ— lg t Horizontal straight line
k ¼ Q

4p � A r01 � r02
� �

aBased on drawdown values for steady-state flow period
bIn the construction of a type curve for the average drawdown in the observation well (Eq. 1.94),
the hydraulic conductivity is k ¼ Qr=ð8p lwlp10DÞ
f is one of the functional expressions in square brackets in Eqs. 1.94, 1.96, or 1.97

r0 ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ 0:5lwð Þ2 þ r2

q
þ zþ 0:5lwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� 0:5lwð Þ2 þ r2
q

þ z� 0:5lwð Þ
or r0 ¼ arcsinh

0:5lw � z
r

þ arcsinh
0:5lw þ z

r
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1.3.2 A Linear Source in an Aquifer Semi-infinite
in the Horizontal Plane or Thickness

The basic assumptions and conditions are:

• the aquifer is vertically anisotropic, semi-infinite in the horizontal plane or
thickness;

• the boundary is straight and infinite in the vertical or horizontal plane.

The drawdown is determined in a piezometer situated at any point in the aquifer.
Three variants of boundary conditions are considered (Fig. 1.17): (1) a planar

constant-head boundary, (2) an impermeable planar boundary, and (3) an imper-
meable boundary in the vertical plane.

The relationships described in this section are based on the superposition prin-
ciple. The flow equation is constructed using solution (Eq. 1.97) for the drawdown
in a piezometer, located in an aquifer infinite in the horizontal plane and thickness.

1.3.2.1 Aquifer Semi-infinite in the Horizontal Plane: Constant-Head
or Impermeable Boundary

The basic assumptions and conditions (Figs. 1.17a, b and 1.18) are:

• general conditions for a linear source in a semi-infinite aquifer (see the begin-
ning of Sect. 1.3.2);

• a constant-head boundary or an impermeable boundary is located in the hori-
zontal plane left or right of the pumping and observation wells;

• the aquifer is infinite in thickness and semi-infinite in the horizontal plane.

To solve the problem, the image-well method is used: there is a single image
well (for the imaginary discharge, see Fig. A3.2).

Basic Analytical Relationships
Transient Flow Equation

Fig. 1.17 Schematic cross-sections of a semi-infinite aquifer. a Constant-head boundary in the
horizontal plane; b impermeable boundary in the horizontal plane; c profile boundary—aquifer
top; d profile boundary—aquifer bottom
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s ¼ Q
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the “+” sign corresponds to an impermeable boundary; and the “–” to
constant-head boundary.

Steady-State Flow Equation

sm ¼ Q
4pklw

arcsinh
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Graphic-Analytical Processing
The relationships given in Table 1.16 have been derived from Eqs. 1.99 and 1.100.

Fig. 1.18 A linear source in
a confined aquifer of infinite
thickness semi-infinite in
the horizontal plane

Table 1.16 Graphic-analytical parameter evaluation

Plot Method Relationship

s— lg t Horizontal straight linea
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1.3.2.2 Aquifer Semi-infinite in Thickness: Impermeable Boundary

The basic assumptions and conditions (Figs. 1.17c, d and 1.19) are:

• general conditions for a linear source in a semi-infinite aquifer (see the begin-
ning of Sect. 1.3.2);

• impermeable boundary in the cross-section (the top or bottom of the aquifer);
• the aquifer is semi-infinite in thickness and infinite in the horizontal plane.

To solve the problem, the image-well method is used: an image well with a
discharge equal to that of the pumping well.

Basic Analytical Relationships
Transient Flow Equation

s ¼ Q
8pklw

M
r2

4at
;
0:5lw þ z

r

� �
þM
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þ
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4at
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r

� �
þM

r2

4at
;
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� �
2
6664

3
7775;
ð1:101Þ

where Bp ¼ LTp or Bp ¼ LBp is the vertical distance from the open part of
piezometer to the top (LTp) or bottom (LBp) of the aquifer, m; Bw ¼ LTw or Bw ¼
LBw is the vertical distance from the center of pumping well screen to the top (LTw)
or bottom (LBw) of the aquifer, m.

Fig. 1.19 A linear source in a confined aquifer with an impermeable profile boundary. a The
boundary is the aquifer top; b the boundary is the aquifer bottom
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Steady-State Flow Equation

sm ¼ Q
4pklw

arcsinh
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Graphic-Analytical Processing
The relationships given in Table 1.17 have been derived from Eqs. 1.101 and 1.102.

1.3.3 A Linear Source in an Aquifer Bounded
in the Horizontal Plane or Thickness

The basic assumptions and conditions (Figs. 1.20 and 1.21) are:

• the aquifer is vertically anisotropic, bounded in the horizontal plane or
thickness;

• the boundary consists of two parallel infinite straight lines, in either the vertical
or horizontal plane.

Table 1.17 Graphic-analytical parameter evaluation

Plot Method Relationship
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Four variants of boundary conditions are considered (Fig. 1.20): (1) two
impermeable boundaries in the vertical plane; (2) two planar constant-head con-
ditions; (3) two planar impermeable boundaries; and (4) two planar boundaries with
mixed boundary conditions—constant head and impermeable boundaries.

In addition, planar boundaries of groundwater flow (Fig. 1.21) are also con-
sidered for the aquifer bounded in thickness (Fig. 1.20a). This enables the partial
penetration of wells to be taken into account in semi-infinite aquifers (see
Sect. 1.1.2) and strip aquifers (see Sect. 1.1.3).

1.3.3.1 Aquifer Bounded in Thickness

The basic assumptions and conditions (Figs. 1.22, 1.23, and 1.24) are:

• general conditions for a bounded aquifer (see the beginning of Sect. 1.3.3);
• two impermeable boundaries in the vertical plane;

Fig. 1.20 Schematic cross-sections of a bounded aquifer. a Profile impermeable boundaries;
b constant-head boundaries in the horizontal plane; c impermeable boundaries in the horizontal
plane; d mixed boundary conditions in the horizontal plane

Fig. 1.21 Schematic cross-sections of an aquifer bounded in the horizontal plane and thickness:
a, b aquifers semi-infinite in the horizontal plane; c, d, e aquifers bounded in the horizontal plane
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• the aquifer is infinite (see Sect. “Aquifer Infinite in the Horizontal Plane”),
semi-infinite (see Sect. “Semi-Infinite Aquifer”), or bounded (see Sect. “Aquifer
Bounded in the Horizontal Plane”) in the horizontal plane.

To solve the problem, the image-well method is used: image wells form an
infinite row of wells (their positions and discharge signs see in Fig. A3.12a, b) and
are used only in solution (Eq. 1.103).

The drawdown is determined in an observation well or in a piezometer, located
in any point in the aquifer.

The effect of partial penetration can be neglected in the evaluation of parameters,
when the well lies at a distance more than 1.5m from the pumping well. In the case
of anisotropic aquifer, this condition is r[ 1:5m=v (Hantush 1964).

Aquifer Infinite in the Horizontal Plane

The test scheme is given in Fig. 1.22. Drawdown plots for a fully and a partially
penetrating wells are given in Fig. 12.16.

Basic Analytical Relationships
Transient Flow Equation

1. Solution based on the superposition principle (for the drawdown in a
piezometer):

s ¼ Q
8pklw
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4at
;
0:5lw þ z
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;
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4at
;
0:5lw � z ji
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 !" #)
; ð1:103Þ

Fig. 1.22 A linear source in a confined aquifer. a Three-dimensional view; b schematic
cross-sections with a piezometer and an observation well
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where z ji is the vertical distance from the center of the screen of the observation well
or the open part of piezometer to the jth image well reflected about the top (i ¼ 1) or
bottom (i ¼ 2) boundary in an aquifer bounded in thickness (see Fig. A3.12a), m; it
is determined by formulas (Eq. A3.22) and (Eq. A3.23).

2. The Hantush solution for the drawdown in a piezometer and for the average
drawdown in an observation well (Hantush 1961b, 1964):

s ¼ Q
4pkrm

f rð Þ: ð1:104Þ

Here, for the drawdown in a piezometer, we have:
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ð1:105Þ

and for the average drawdown in an observation well:

f rð Þ ¼ W
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m
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m


 �i
; ð1:106Þ

where zw1 and zw2 are the vertical distances from the aquifer top to the bottom and the
top of the pumping well screen, respectively, m (Fig. 1.22); zp1 and zp2 are the same
for the observation well; ar ¼ krm=S is the horizontal hydraulic diffusivity, m2/d.

3. The Moench solution for the drawdown in a partially penetrating observation
well or piezometer (Moench 1993, 1996):

s ¼ Q
4pkrm

f t; r;m; lw; lp; LTw; LTp; kr; kz; S
� �

: ð1:107Þ

The functional relationship (Eq. 1.107) is treated with the use of an algorithm from
WTAQ2 program (see Appendix 5.2).

4. The Moench solution for the drawdown in a partially penetrating observation
well or piezometer, with the wellbore storage and skin, as well as the delayed
response of observation piezometer taken into account (Moench 1997):

s ¼ Q
4pkrm

f t; r; rw; rc; rp;m; lw; lp; LTw; LTp; kr; kz; S; kskin;mskin
� �

: ð1:108Þ

The functional relationship (Eq. 1.108) is treated with the use of an algorithm from
WTAQ3 program (see Appendix 5.3).

5. Moench solution for drawdown in a partially penetrating pumping well takes
into account the wellbore storage and skin (Moench 1997):
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sw ¼ Q
4pkrm

f t; rw; rc;m; lw; LTw; kr; kz; S; kskin;mskinð Þ: ð1:109Þ

The functional relationship (Eq. 1.109) is treated with the use of an algorithm from
WTAQ3 program (see Appendix 5.3).

In solutions (Eqs. 1.107 and 1.108) for the drawdown in the piezometer, the
length of the screen of the observation well (lp) is excluded from the function.

Graphic-Analytical Processing
The relationships given in Table 1.18 have been derived from Eq. 1.103.

Semi-infinite Aquifer

The test scheme is given in Fig. 1.21a, b and Fig. 1.23. The general form of the
Hantush and Moench solutions (see Sect. “Aquifer Infinite in the Horizontal Plane”)
for the average drawdown in an observation well or the drawdown in a piezometer is

s ¼ Q
4pkrm

f rð Þ � f qð Þ½ �; ð1:110Þ

where f is taken from Eq. 1.104 or 1.107, depending on the solution; the
sign “+” corresponds to a constant-head boundary condition and “–” to an imper-
meable boundary.

Table 1.18 Graphic-analytical parameter evaluation

Plot Method Relationship
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Fig. 1.23 A linear source in a confined semi-infinite in the horizontal plane aquifer. Schematic
cross-sections: a with a piezometer, b with an observation well
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Aquifer Bounded in the Horizontal Plane

The test scheme is given in Fig. 1.24. The general form of the Hantush and Moench
solutions (see Sect. “Aquifer Infinite in the Horizontal Plane”) for the average
drawdown in an observation well or the drawdown in a piezometer is for
constant-head boundaries (Fig. 1.21c):

s ¼ Q
4pkrm

f rð Þþ
Xn
j¼1

�1ð Þ j
X2
i¼1

f q j
i

� �" #
; ð1:111Þ

for impermeable boundaries (Fig. 1.21d):

s ¼ Q
4pkrm

f rð Þþ
Xn
j¼1

X2
i¼1

f q j
i

� �" #
; ð1:112Þ

for constant-head and impermeable boundaries (Fig. 1.21e):

s ¼ Q
4pkrm

f rð Þþ
Xn

j¼1;3...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2f q j
i

� �þ Xn
j¼2;4...

�1ð Þj=2f q j
i

� �( )
;

ð1:113Þ

where f is taken from Eq. 1.104 or 1.107, depending on the solution.

Fig. 1.24 A linear source in a confined aquifer bounded in the horizontal plane (strip aquifer).
Schematic cross-sections a with a piezometer, b with an observation well

1.3 Partially Penetrating Well: Linear Source 49



1.3.3.2 Strip Aquifer

The basic assumptions and conditions (Figs. 1.20b–d and 1.25) are:

• general conditions for a strip aquifer (see the beginning of Sect. 1.3.3);
• the aquifer is infinite in thickness and bounded in the horizontal plane;
• the boundaries are two parallel straight lines in the horizontal plane.

Three variants of boundary conditions are considered (Fig. 1.20b–d): (1) two
constant-head boundaries; (2) two impermeable boundaries; and (3) mixed
boundary conditions—constant-head and impermeable boundaries.

The drawdown is determined in a piezometer located at any point of the aquifer.
To solve the problem, the image-well method is used: image wells form an

infinite row (for the distances to the image wells and the signs of discharges, see
Figs. A3.4 and A3.12c).

Basic Analytical Relationships
Transient Flow Equations

1. Two constant-head boundaries (Fig. 1.20b):

s ¼ Q
8pklw

M1 þM2 þ
Xn
j¼1

�1ð Þ j
X2
i¼1

M3 þM4ð Þ
( )

; ð1:114Þ
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2. Two impermeable boundaries (Fig. 1.20c):

s ¼ Q
8pklw

M1 þM2 þ
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X2
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M3 þM4ð Þ
( )

: ð1:115Þ

Fig. 1.25 A linear source in
a confined aquifer bounded
in the horizontal plane and
infinite in thickness
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3. Constant-head and impermeable boundaries (Fig. 1.20d):

s¼ Q
8pklw

M1þM2þ
Xn

j¼1;3...

X2
i¼1

�1ð Þðjþ2i�1Þ=2 M3þM4ð Þþ
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�1ð Þj=2
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( )

:

ð1:116Þ

The solutions (Eqs. 1.114–1.116) have been derived from the superposition
principle.

Graphic-Analytical Processing
The relationships given in Table 1.19 have been derived from Eqs. 1.114–1.116.

1.4 Confined Aquifer of Nonuniform Thickness

The basic assumptions and conditions (Fig. 1.26) are:

• the aquifer has a variable thickness along the x axis and constant thickness along
the y axis (though varying along the abscissa);

• the thickness decreases exponentially along the x axis;
• the aquifer is assumed isotropic with infinite lateral extent;
• the pumping and observation wells are fully penetrating.

The drawdown is determined in an observation well located at any distance from
the pumping well in the direction of decreasing aquifer thickness. The only
restriction in the direction of thickness increase is that the rate of increase in the
aquifer thickness is less than 0.2 (i.e., the ratio of an increase in aquifer thickness
within some distance to this distance is less than 0.2): Dm=Dx\0:2.

Table 1.19 Graphic-analytical parameter evaluation

Plot Method Relationship
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Basic Analytical Relationships
Transient Flow Equations

The Hantush solution (Hantush 1962):

s ¼ Q
4pkmw

exp
r
as
cos h

� �
W

r2Ss
4kt

;
r
as

� �
; ð1:117Þ

as ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � L02p

q
ln mw=mp
� � ; ð1:118Þ

where as is a geometric parameter, determining the exponential increase in aquifer
thickness, m; h is the angle between the x axis and the line passing through the
pumping and observation wells (Fig. 1.26b), in degrees; the cosine of the angle can
be written as:

cos h ¼ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � L02p

q
; ð1:119Þ

where L0p is the distance between the observation well and the line passing through the
pumping well parallel to the x axis (Fig. 1.26b), m;mw; mp are aquifer thicknesses at
the points where the pumping and observation wells are located (Fig. 1.26a), m.

The Eq. 1.117 can be simplified by substituting expressions (Eqs. 1.118 and
1.119):

s ¼ Q
4pkmw

ffiffiffiffiffiffi
mw

mp

r
W

r2Ss
4kt

;
r
as

� �
: ð1:120Þ

Fig. 1.26 Schematic diagram of a confined aquifer of nonuniform thickness: a cross-section and
b planar view
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Under ideal conditions for a nonuniform thickness aquifer, the drawdown in an
observation well located some distance toward a decrease in aquifer thickness (see
Fig. 1.26a) should be greater than that in a well located the same distance in the
direction of increasing thickness.

The solution (Eq. 1.120) can be used to evaluate the hydraulic conductivity (k)
and the specific storage (Ss) of an aquifer of nonuniform thickness.
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Chapter 2
Unconfined Aquifers

The chapter considers analytical solutions and analytical methods used in pumping
tests in an unconfined aquifer with infinite lateral extent. The construction of
groundwater flow equations for unconfined aquifers, semi-infinite or bounded in the
horizontal plane, is briefly described in Sect. 2.2. Section 2.3 focuses on pumping
tests in unconfined aquifers with sloped bottoms.

The basic assumptions and conditions (Fig. 2.1) are:

• the aquifer is unconfined, homogeneous, isotropic or vertically anisotropic,
infinite in the horizontal plane, and underlain by an aquiclude; the case of
leakage from an underlying layer and pumping in a confined–unconfined aquifer
is considered (Fig. 2.2);

• the initial saturated aquifer thickness is constant;
• the pumping well is fully or partially penetrating;
• wellbore storage, wellbore skin, and delayed response of observation piezometer

can be taken into account in the evaluation of the drawdown.

The drawdown is determined in a fully or partially penetrating observation well
or a piezometer at any point of the aquifer.

Typical plots of drawdown in the observation well are given in Figs. 12.17 and
12.18. For the effect of the storage coefficient and specific yield on the drawdown in
an unconfined aquifer, see Fig. 12.20.

2.1 Aquifer of Infinite Lateral Extent

This section gives transient and quasi-steady-state analytical solutions for calcu-
lating the drawdown in an unconfined aquifer infinite in the horizontal plane. The
hydraulic characteristics to be determined are listed for each case, depending on the
chosen solution.
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Basic Analytical Relationships
Transient Flow Equations

1. Neuman solution (see Appendix 7.6) for the average drawdown in an
observation well and the drawdown in a piezometer for a fully or partially pene-
trating pumping well in an anisotropic aquifer (Neuman 1972–1975) is:

s ¼ Q
4pkrm

Z1
0

4s J0 sv
r
m

� �
u0 sð Þþ

X1
n¼1

un sð Þ
" #

ds; ð2:1Þ

where s is the drawdown in the observation well (or piezometer), m; Q is the
discharge rate, m3/d; v ¼ ffiffiffiffiffiffiffiffiffiffi

kz=kr
p

is anisotropy factor; kr; kz are the horizontal and

Fig. 2.1 Vertically anisotropic unconfined aquifer. a Partially penetrating pumping well and
piezometer; b partially penetrating pumping and observation wells; c fully penetrating pumping
well with a piezometer and fully penetrating observation well; d an example of unconfined aquifer
scheme for Moench solution
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vertical hydraulic conductivities, respectively, m/d; m is the initial saturated
thickness of an unconfined aquifer (see Fig. 2.1), m; r is the radial distance from the
pumping to the observation well (or to a piezometer), m; J0 �ð Þ is Bessel function of
the first kind of the zero order (see Appendix 7.13).

Depending on the degree of penetration (full or partial) of the pumping and
observation wells, the functional expressions for u0 sð Þ and un sð Þ can be written as
follows.

1.1. For a partially penetrating pumping well and piezometer (Neuman 1974)
(see Fig. 2.1a):

u0 sð Þ ¼ b0 cosh c0
m� LTp

m

� � sinh c0
m� zw2

m

� �
� sinh c0

m� zw1
m

� �
lw
m
sinh c0

; ð2:2Þ

un sð Þ ¼ bn cos cn
m� LTp

m

� � sin cn
m� zw2

m

� �
� sin cn

m� zw1
m

� �
lw
m
sin cn

; ð2:3Þ

where zw1 and zw2 are the vertical distances from the initial water table to the bottom
and the top of the pumping well screen, respectively (Fig. 2.1a, b), m; LTp is the
vertical distance from the initial water table to the open part of the piezometer, m; lw
is pumping-well screen length, m.

1.2. For partially penetrating pumping and observation wells (Neuman 1974)
(see Fig. 2.1b):

u0 sð Þ ¼ b0 sinh c0
m� zp2

m

� �
� sinh c0

m� zp1
m

� �h i sinh c0
m� zw2

m

� �
� sinh c0

m� zw1
m

� �
lw
m
lp
m
c0 sinh c0

;

ð2:4Þ

un sð Þ ¼ bn sin cn
m� zp2

m

� �
� sin cn

m� zp1
m

� �h i sin cn
m� zw2

m

� �
� sin cn

m� zw1
m

� �
lw
m
lp
m
cn sin cn

;

ð2:5Þ

where zp1 and zp2 are the vertical distances from the initial water table to the bottom
and top of the observation well screen, respectively (Fig. 2.1b), m; lp is the
observation-well screen length, m.

1.3. For a fully penetrating pumping well and piezometer (Neuman 1972, 1973)
(see Fig. 2.1c):
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u0 sð Þ ¼ b0 cosh c0
m� LTp

m

� �
; ð2:6Þ

un sð Þ ¼ bn cos cn
m� LTp

m

� �
: ð2:7Þ

1.4. For fully penetrating pumping and observation wells (Neuman 1973, 1975)
(see Fig. 2.1c):

u0 sð Þ ¼ b0
sinh c0
c0

; ð2:8Þ

un sð Þ ¼ bn
sin cn
cn

: ð2:9Þ

In expressions (Eqs. 2.2–2.9), c0 and cn are the roots of the equations

rc0 sinh c0 ¼ s2 � c20
� �

cosh c0; c20\s2;

rcn sin cn ¼ � s2 þ c2n
� �

cos cn; 2n� 1ð Þ p
2
\cn\np; n� 1;

u ¼ kzt
Sm

; r ¼ S=Sy;

b0 ¼
1� exp �uðs2 � c20Þ

� �
s2 þð1þrÞc20 � s2 � c20

� �2
=r

� 1
cosh c0

;

bn ¼
1� exp �uðs2 þ c2nÞ

� �
s2 � ð1þrÞc2n � s2 þ c2n

� �2
=r

� 1
cos cn

;

where S is the storage coefficient, dimensionless; Sy is the specific yield, dimen-
sionless; t is the time elapsed from the start of pumping, d.

Equation 2.1 is solved by using the algorithm of DELAY2 code (see Appendix
5.1). The Neuman solution (Eq. 2.1) is used to determine the hydraulic conduc-
tivities in the vertical and horizontal directions (kr; kz), storage coefficient (S) and
specific yield (Sy) of an unconfined aquifer.

2. For the Boulton solutions (Boulton 1963) for the drawdown in a fully pen-
etrating observation well in an isotropic aquifer (the pumping well is fully pene-
trating), two such solutions are used, yielding nearly the same drawdown:

s ¼ Q
2pkm

Z1
0

1
s
J0 r

ffiffiffiffiffiffiffi
aSy
km

r
s

 ! 1� 1
s2 þ 1

exp � at
s2 þ 1

s2
� �

�

� s2

s2 þ 1
exp �a

Sþ Sy
S

t s2 þ 1
� �	 


8>><
>>:

9>>=
>>;ds; ð2:10Þ
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s ¼ Q
2pkm

Z1
0

1
s

1� exp �l1ð Þ�
� cosh l2 þ

atg 1� s2ð Þ
2l2

sinh l2

	 
8<
:

9=
;J0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðSþ SyÞ

T

r
s

 !
ds;

ð2:11Þ

where

l1 ¼
atg 1þ s2ð Þ

2
; ð2:12Þ

l2 ¼
at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 1þ s2ð Þ2�4gs2

q
2

; ð2:13Þ

g ¼ Sþ Sy
S

; ð2:14Þ

k is the hydraulic conductivity of an isotropic unconfined aquifer, m/d.
The empirical parameter a (so-called reciprocal of Boulton’s delay index) (1/d)

can be defined as

a ¼ 3k
Sym

: ð2:15Þ

For a vertically anisotropic aquifer, k ¼ kz in formula (2.15). Neuman (1975, 1979)
proposed another relationship for a:

a ¼ kz
Sym

3:063� 0:567 lg
vr
m

� �2	 

; ð2:16Þ

which suggests that the further the observation well is from the pumping well, the
less the value of a.

Boulton solutions (Eqs. 2.10 and 2.11) are used to determine the hydraulic con-
ductivity, the storage coefficient, and specific yield (k; S; Sy) of an unconfined aquifer.

3. The Boulton solution (Boulton 1954) for the drawdown of the water table
(corresponds to the gravity-drainage period) in a fully penetrating observation well
in an isotropic aquifer (the pumping well is fully penetrating) is:

s ¼ Q
2pkm

FB
kt
Sym

;
r
m

� �
; ð2:17Þ

FB u; bð Þ ¼
Z1
0

1
s
J0 bsð Þ 1� exp �us tanh sð Þ½ � ds; ð2:18Þ

where FB u; bð Þ is the Boulton function (see Appendix 7.5).
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The Boulton solution (Eq. 2.17) with drawdown values corresponding to a
gravity-drainage period (see Fig. 12.17) is used to determine the hydraulic con-
ductivity (k) and the specific yield (Sy) of the unconfined aquifer.

4. The Moench solution (Moench 1993, 1996) for the drawdown in a fully or
partially penetrating observation well or a piezometer is:

s ¼ Q
4pkrm

f t; r;m; lw; lp; LTw; LTp; kr; kz; S; Sy
� �

; ð2:19Þ

where LTp is the vertical distance from the initial water table to the open part of the
piezometer or the center of observation well screen (for the observation well,
LTp ¼ zp2 þ lp=2), m; LTw ¼ zw2 þ lw=2 is the vertical distance from the initial water
table to the center of the pumping well screen, m.

The functional relationship (Eq. 2.19) is treated using the algorithm of WTAQ2
code (see Appendix 5.2). The Moench solution (Eq. 2.19) is used to evaluate the
vertical and horizontal hydraulic conductivities (kr; kz), as well as the storage
coefficient (S) and specific yield (Sy) of an unconfined aquifer.

5. The Moench solution (Moench 1997) for the drawdown in a fully or partially
penetrating observation well or a piezometer with the storages of the pumping and
observation wells taken into account is:

s ¼ Q
4pkrm

f t; r; rw; rc; rp;m; lw; lp; LTw; LTp; kr; kz; S; Sy; kskin;mskin
� �

; ð2:20Þ

where rw; rc; rp are the radiuses of the pumping well, its casing, and the obser-
vation well, m; kskin; mskin are the hydraulic conductivity (m/d) and the thickness
(m) of the wellbore skin (see Appendix 2).

The functional relationship (Eq. 2.20) takes into account the wellbore storage,
the delayed response of the observation piezometer, and the wellbore skin. The
algorithm of WTAQ3 code is used for its treatment (see Appendix 5.3). The
Moench solution (Eq. 2.20) is used to determine the horizontal and vertical
hydraulic conductivities (kr; kz), the storage coefficient (S), the specific yield (Sy) of
the unconfined aquifer and, additionally, to evaluate the hydraulic conductivity and
the thickness of the wellbore skin (kskin; mskin).

In addition, the functional relationships (Eqs. 2.20 and 2.21) enable one to take
into account the effect of the delayed drainage from the unsaturated zone on the
drawdown in the wells during pumping. In this case, the code WTAQ version 2 (see
Appendix 5.4) is used for calculations (Barlow and Moench 2011).

6. Moench’s solution (Moench 1997) for the drawdown in a fully or partially
penetrating pumping well:

sw ¼ Q
4pkrm

f t; rw; rc;m; lw; LTw; kr; kz; S; Sy; kskin;mskin
� �

: ð2:21Þ
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The functional relationship (Eq. 2.21) takes into account the wellbore storage
and the wellbore skin. The algorithm of WTAQ3 code is used for its calculation
(see Appendix 5.3). The parameters being determined are similar to the Moench
relationship (Eq. 2.20). Here, as well as in (Eq. 2.20), the effect of the capillary
fringe is evaluated.

7. A simplified solution for the drawdown during the gravity-drainage period
(see Fig. 12.17) in a fully penetrating observation well in an isotropic unconfined
aquifer (the pumping well is fully penetrating) (Jacob 1963) is:

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2pk
W

r2

4at

� �s
; ð2:22Þ

where a is the hydraulic diffusivity of the unconfined aquifer, m2/d; W uð Þ is a
well-function (see Appendix 7.1).

Solution (Eq. 2.22) is used to evaluate the hydraulic conductivity (k) and the
hydraulic diffusivity (a ¼ km=ðSþ SyÞ � km=Sy) of the unconfined aquifer.

8. A simplified solution for the drawdown in a fully penetrating observation well
in an isotropic unconfined aquifer (the pumping well is fully penetrating) during
gravity-drainage period with the leakage through aquifer bottom taken into account
(Fig. 2.2a) is:

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2pk
W

r2

4at
;
r
B

� �s
; ð2:23Þ

B ¼
ffiffiffiffiffiffiffiffiffiffiffi
k�mm0

k0

r
; ð2:24Þ

where B is the leakage factor, m; �m ¼ m is the initial saturated thickness of the
unconfined aquifer, m; k0; m0 are the hydraulic conductivity (m/d) and thickness
(m) of the aquitard; W u; bð Þ is the well-function for leaky aquifers (see
Appendix 7.2).

The solution (Eq. 2.23) is used to evaluate the hydraulic conductivity (k) and
hydraulic diffusivity (a ¼ km=Sy) of the unconfined aquifer, as well as the leakage
factor (B).

9. The Moench–Prickett solution (Moench and Prickett 1972) for a confined–
unconfined aquifer (Fig. 2.2b) is:
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s ¼ Q
4pkm

W
r2Sy
4kmt

� �
�W

R2Sy
4kmt

� �	 

þH � m ! r\R

s ¼ Q
4pkm

exp �R2 Sy � S
� �
4kmt

� �
W

r2S
4kmt

� �
! r[R;

8>><
>>: ð2:25Þ

where H is the initial head, m; m is confined-aquifer thickness, m; R is the hori-
zontal distance from the pumping well to the point where the confined aquifer
becomes unconfined (Fig. 2.2b).

The distance R is calculated from a transcendent equation for any moment t:

Q
4pkm H � mð Þ exp � R2Sy

4kmt

� �
� exp � R2S

4kmt

� ��
W

R2S
4kmt

� �
¼ 0: ð2:26Þ

Depending on the radius, a solution from the system of Eq. 2.25 is chosen, in
which the top equation accounts for the drawdown for the periods when the
observation well is located in the unconfined flow zone, and the bottom equation
accounts for the same for the confined zone. When the initial head is below the top
of the aquifer, the system of Eq. 2.25 transforms into an equation for gravity-
drainage conditions

s ¼ Q
4pkm

W
r2Sy
4kmt

� �
; ð2:27Þ

which is an analog of the solution (Eq. 2.22). The Moench–Prickett solution
(Eq. 2.25) is used to determine the hydraulic conductivity of the aquifer (k), the
storage coefficient of the confined flow zone (S), and the specific yield for the zone
of unconfined flow (Sy).

When evaluating drawdown in an unconfined aquifer with the use of transient
flow relationships, one should keep in mind that: (1) the screen length of the
observation well (lp) is eliminated in solutions (Eq. 2.19) and (Eq. 2.20) in the
calculation of the drawdown in the piezometer; and (2) the drawdown in the

Fig. 2.2 a Unconfined leaky aquifer and b confined-unconfined aquifer
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observation well derived from solutions (Eqs. 2.1, 2.19, and 2.20) is averaged over
its screen length.

The solutions (Eqs. 2.1, 2.10, 2.11, 2.17, and 2.19–2.21) imply a slight decline
in the water table in the course of testing, relative to the initial saturated thickness of
the aquifer. Otherwise, it is recommended to introduce a correction (Jacob 1963) to
the drawdown evaluated by these relationships, i.e.

sc ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 2ms

p
; ð2:28Þ

where sc is the corrected drawdown, m; s is the drawdown derived from formulas
without correction, m.

The need to introduce corrections to the drawdown (see Fig. 12.19) in the
solutions given above, depending on the degree of penetration (full or partial) of the
pumping well and the magnitude of drawdown, is classified in Table 2.1.

Quasi-Steady-State Flow Equation (corresponds to the gravity-drainage period)

s 2m� sð Þ ¼ Q
2pk

ln
2:25kmt
r2Sy

¼ 0:366Q
k

lg
2:25kmt
r2Sy

ð2:29Þ

or, in terms of hydraulic diffusivity:

s 2m� sð Þ ¼ Q
2pk

ln
2:25at
r2

¼ 0:366Q
k

lg
2:25at
r2

: ð2:30Þ

The equation for quasi-steady-state period implies the full penetration of the
pumping and observation wells and the isotropy of the unconfined aquifer.

Table 2.1 Application of analytical solutions for different degrees of penetration of the pumping
well and the magnitude of drawdown

Pumping well
penetration

Condition Solution Correction

Full Small drawdowna 2.1, 2.10, 2.11, 2.17,
2.19–2.21

Not required

Full Large drawdowna 2.1, 2.10, 2.11, 2.17,
2.19–2.21

Obligatory

Partial Water table lies above the
screen topb

2.1, 2.19–2.21 Not applied

Partial Water table lies below the
screen topc

The solutions are
inapplicable

Not applied

aThe drawdown can be considered small when it is less than 20 % of the initial saturated thickness
of an unconfined aquifer, i.e., s < 0.2m (Borevskiy et al. 1973)
bThe screen of the pumping well during the pumping test remains fully within the saturated zone
cWater table can drop below the top of the pumping well screen during the test: the length of the
part of the screen within the saturated zone varies during the pumping test
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Graphic-Analytical Processing
The relationships given in Table 2.2 have been derived from simplified solutions
(Eqs. 2.22 and 2.30), which assume the pumping and observation wells are fully
penetrating. The graphic-analytical processing involves only drawdown values
corresponding to the gravity-drainage period in an isotropic aquifer.

In Table 2.2, the values of the hydraulic conductivity and hydraulic diffusivity
are determined independently. Given these characteristics, the specific yield of the
unconfined aquifer can be readily evaluated: Sy ¼ km=a. In addition, the hydraulic
diffusivity and the specific yield can be evaluated based on the intercept of the
straight line on the abscissa (Table 2.3).

Table 2.2 Graphic-analytical parameter evaluation

Plot Method Relationship

s 2m� sð Þ—lg t Straight line
k ¼ 0:366Q

C
, lg a ¼ A

C
þ lg

r2

2:25

s 2m� sð Þ—lg r The same
k ¼ 0:732Q

C
, lg a ¼ 2

A
C
� lg 2:25 � tð Þ

s 2m� sð Þ—lg
t
r2

The same
k ¼ 0:366Q

C
, lg a ¼ A

C
� lg 2:25

lg s 2m� sð Þ½ �—lg t
Type curve: lgW uð Þ—lg

1
u k ¼ Q

2p � 10D, a ¼ r2 � 10E
4

lg s 2m� sð Þ½ �—lg
t
r2

The same
k ¼ Q

2p � 10D, a ¼ 10E

4

s1 2m� s1ð Þ�
�s2 2m� s2ð Þ

" #
—lg t

Horizontal straight line
k ¼ Q

p � A ln
r2
r1

A is the intercept on the ordinate axis (see Sects. 12.1.1 and 12.1.2); C is the slope of the straight line (see
Sect. 12.1.1); D, E are the shifts of the plot of the actual and reference curves (see Sect. 12.1.3) in the
vertical (D) and horizontal (E) directions, respectively;
s1; s2; r1; r2 is the drawdown (s) in and the distance to the pumping well (r) for the first and second
observation wells, respectively. In the case of vertical anisotropy, horizontal hydraulic conductivity is
determined: k ¼ kr

Table 2.3 Graphic-analytical parameter evaluation

Plot Method Relationship

s 2m� sð Þ—lg t Straight line
a ¼ r2

2:25tx
, Sy ¼ 2:25kmtx

r2

s 2m� sð Þ—lg r The same
a ¼ r2x

2:25t
, Sy ¼ 2:25kmt

r2x

s 2m� sð Þ—lg
t
r2

The same
a ¼ 1

2:25 t=r2ð Þx
, Sy ¼ 2:25km t=r2ð Þx

tx, rx and ðt=r2Þx are the intercepts on the abscissas of appropriate plots (see Fig. 12.1)
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2.2 Semi-infinite and Bounded Unconfined Aquifers

To solve the boundary problem for unconfined aquifers, one may use the same
approach as for confined aquifers (see Sects. 1.1.2–1.1.5). The solutions for the
drawdown are derived from basic solutions (Eqs. 2.1, 2.10, 2.11, 2.17, and 2.19)
with the effect of image wells taken into account through the superposition
principle.

For example, the Boulton solution (Eq. 2.17) for a semi-infinite aquifer with a
constant-head boundary can be written as:

s ¼ Q
2pkm

FB
kt
Sym

;
r
m

� �
� FB

kt
Sym

;
q
m

� �	 

; ð2:31Þ

and the solution (Eq. 2.22) for an impermeable boundary as:

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2pk
W

r2

4at

� �
þW

q2

4at

� �	 
s
; ð2:32Þ

where q is the horizontal distance from the observation to the image well (see
Fig. A3.2 and Eq. A3.1), m.

2.3 Sloping Unconfined Aquifer

The basic assumptions and conditions (Figs. 2.3 and 2.4) are:

• the aquifer is unconfined, isotropic, sloped, and underlain by an aquiclude
(Fig. 2.3a) or an aquitard (Fig. 2.3b), through which water leaks during the test;

• the initial saturated thickness of the aquifer does not change over the space;
• the slopes of the aquiclude and groundwater table are the same; the presented

solutions are applicable to aquicludes with a slope less than 0.2;
• the drawdown in the pumping well must not exceed half the initial saturated

thickness of the main aquifer;
• in the case of a leaky aquifer, the storage of the aquiclude is neglected;
• the aquifer is infinite in the horizontal plane (Fig. 2.3) or semi-infinite with a

constant-head boundary (Fig. 2.4).

The drawdown is determined in the aquifer at any distance from the pumping
well for the gravity-drainage period. The drawdown for sloped aquifers depends on
both the distance to the pumping well and the angle h (Fig. 2.3c), as well as the
relative positions of the observation and pumping wells: whether the former lies
upstream or downstream of the latter. Ideally, the drawdown in the observation well
upstream of the pumping well is less than that downstream of it.
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The analytical relationships are used to determine the hydraulic conductivity (k)
and specific yield (Sy) of the unconfined aquifer. In the case where leakage is taken
into account, the leakage factor (B) is also evaluated.

Basic Analytic Relationships
Transient Flow Equations

1. Solutions for unconfined nonleaky aquifer (Hantush 1962)
1.1. Aquifer of infinite lateral extent (Fig. 2.3a):

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2pk
exp � r

c
cos h

� �
W

r2Sy
4kmt

;
r
c

� �s
; ð2:33Þ

c � 1:75� 2ð Þ m
tan hS

; ð2:34Þ

where m is the initial saturated thickness of the sloped unconfined aquifer, m; hs is
the slope of the bottom of the aquifer, degree; h is the angle between the x axis and

Fig. 2.3 Sloped unconfined aquifer of infinite lateral extent: a nonleaky aquifer; b leaky aquifer.
c Planar view
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the line connecting the pumping and observation wells (see Figs. 2.3c and 2.4e); the
cosine of the angle in degrees can be expressed in terms of the distances (Eq. 1.119).

1.2. Semi-infinite aquifer (Fig. 2.4a, b):

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2pk
exp n

r
c
cos h

� �
W

r2Sy
4kmt

;
r
c

� �
�W

q2Sy
4kmt

;
q
c

� �	 
s
; ð2:35Þ

where n ¼ �1 for a well upstream from the boundary (Fig. 2.4a, c) and n ¼ 1 for a
well downstream from the boundary (Fig. 2.4b, d); q is the horizontal distance from
the observation well to the image well (Eq. A3.1), m.

2. Solutions for unconfined leaky aquifer (Hantush 1964)
2.1. Aquifer infinite in the horizontal plane (Fig. 2.3b):

Fig. 2.4 Sloped unconfined aquifer semi-infinite in the horizontal plane: a, b nonleaky aquifers;
c, d leaky aquifers. e A planar view with the distances to the boundary and an image well (the
signs of actual and image flow rates are given near the wells); a, c wells are located upstream of the
boundary; b, d wells are located downstream of the boundary. Lw, Lp are the distances from the
pumping and observation wells to the boundary, respectively
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s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2pk
exp � r

c
cos h

� �
W

r2Sy
4kmt

; rc0
� �s

; ð2:36Þ

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
c2

þ 1
B2

s
; ð2:37Þ

where B is the leakage factor (Eq. 2.24), m.
2.2. Aquifer semi-infinite in the horizontal plane (Fig. 2.4c, d):

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2pk
exp n

r
c
cos h

� �
W

r2Sy
4kmt

; rc0
� �

�W
q2Sy
4kmt

; qc0
� �	 
s

: ð2:38Þ

Steady-State Flow Equations
1. Solutions for an unconfined nonleaky aquifer (Hantush 1962)
1.1. Aquifer infinite in the horizontal plane (Fig. 2.3a):

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

pk
exp � r

c
cos h

� �
K0

r
c

� �s
; ð2:39Þ

where K0 �ð Þ is a modified Bessel function of the second kind of the zero order (see
Appendix 7.13).

1.2. Semi-infinite aquifer (Fig. 2.4a, b):

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

pk
exp n

r
c
cos h

� �
K0

r
c

� �
� K0

q
c

� �	 
s
: ð2:40Þ

2. Solutions for unconfined leaky aquifer (Hantush 1964)
2.1. Aquifer infinite in the horizontal plane (Fig. 2.3b):

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

pk
exp � r

c
cos h

� �
K0 rc0ð Þ

s
: ð2:41Þ

2.2. Aquifer semi-infinite in the horizontal plane (Fig. 2.4c, d):

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

pk
exp n

r
c
cos h

� �
K0 rc0ð Þ � K0 qc0ð Þ½ �

s
: ð2:42Þ
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Chapter 3
Leaky Aquifers

A complex of water-saturated rocks, consisting of aquifers separated by aquitards
(low-permeability layers), is considered in this chapter (Fig. 3.1). The pumping
well penetrates only one (the main) aquifer. The head in the adjacent aquifer is
either constant throughout the pumping-test period or varies over time due to
pumping. The storage of the aquitards can be taken into account.

The initial formulation of the problem takes into account the processes of
interlayer hydrodynamic interaction, which can be accounted for in several limit
models (schemes), based on the following assumptions:

• the water level in the adjacent aquifer (where steady-state flow occurs) remains
constant during the pumping test; the effect of the lateral flow boundaries can be
taken into account; the storage of the aquitard is neglected;

• the water level in the adjacent aquifer (where transient flow occurs) changes
during the pumping test; the storage of the aquitard is neglected;

• the water level in the adjacent aquifer either remains constant or varies and the
storage of the separating aquitard is taken into account.

The basic solutions are used to construct relationships, which take into account
the planar boundaries of the flow.

In addition, this chapter presents flow equations, describing the drawdown in
complex stratified systems with various profile boundary conditions.

All solutions for leaky aquifers imply vertical flow in the aquitards and hori-
zontal flow in the main isotropic aquifer. Some analytical solutions have been
obtained for the partially penetrating well in an aquifer characterized by anisotropy
in the vertical plane.

© Springer International Publishing Switzerland 2017
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3.1 Leaky Aquifer with Steady-State Flow
in the Adjacent Aquifers

This section gives transient and steady-state analytical solutions for leaky aquifers
with infinite, semi-infinite, and limited lateral extent assuming a constant head in
the adjacent aquifers. The transient solutions are used to evaluate the transmissivity
(T), storage coefficient (S) and hydraulic diffusivity (a) of the main aquifer, as well
as the leakage factor (B). The hydraulic characteristics are derived from data on the
drawdown in the main aquifer.

3.1.1 Aquifer of Infinite Lateral Extent

The basic assumptions and conditions (Fig. 3.2) are:

• the leaky aquifer system consists of two or three aquifers separated by aquitards;
• the main aquifer, penetrated by the pumping well, is isotropic or anisotropic in

the horizontal plane;
• the water level in the adjacent aquifers remains unchanged during the pumping

test;
• the initial water levels in the aquifers can be either the same or different;
• the aquifer has no lateral boundaries (infinite in the horizontal plane);
• the pumping well fully penetrates the main aquifer; the storage of the well can

be taken into account;
• the aquitard has negligible storage.

Fig. 3.1 Schematic diagram of a pumping test in a leaky aquifer system. Q is pumping-well
discharge, s is the drawdown, m is aquifer thickness, m0 is the aquitard thickness
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Fig. 3.2 A leaky aquifer with the level in adjacent aquifers remaining unchanged during the
pumping test (cross-section view): a a two-aquifer system with downward leakage; b the same
with upward leakage; c an example of a scheme of a leaky aquifer system for solutions taking into
account pumping-well storage; d a leaky confined aquifer with an adjacent unconfined aquifer;
three-aquifer; e confined and f unconfined systems. The arrows show flow direction in the layers
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The drawdown is determined at any distance from the pumping well in the main
aquifer. Typical plots of the drawdown in an observation well and the effect of
hydraulic parameters on the drawdown are given in Fig. 12.21.

Basic Analytical Relationships
Transient Flow Equations

1. The principal solution for a leaky aquifer is the Hantush–Jacob solution
(Hantush and Jacob 1955b):

s ¼ Q
4pT

W
r2S
4Tt

;
r
B

� �
¼ Q

4pT
W

r2

4at
;
r
B

� �
; ð3:1Þ

W u; bð Þ ¼
Z1
u

1
s
exp �s� b2

4s

� �
ds; ð3:2Þ

where, for a single adjacent aquifer (Fig. 3.1a–d):

B ¼
ffiffiffiffiffiffiffiffi
Tm0

k0

r
; ð3:3Þ

and for two adjacent aquifers (Fig. 3.1e, f):

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tm0m00

k0m00 þ k00m0

r
; ð3:4Þ

where s is the drawdown in the observation well, m; Q is the discharge rate, m3/d;
T ¼ km is the transmissivity of the main aquifer, m2/d; k; m are the hydraulic
conductivity (m/d) and thickness (m) of the aquifer; S is the aquifer storage coef-
ficient, dimensionless; a ¼ T=S is the hydraulic diffusivity of the aquifer, m2/d; B is
the leakage factor, depending on the number of adjacent aquifers (see Appendix 1),
m; k0; m0 and k00; m00 are the hydraulic conductivities (m/d) and thicknesses (m) of
the aquitards; r is the radial distance from the pumping to the observation well, m; t
is the time elapsed from the start of pumping, d; W u;bð Þ is the well-function for
leaky aquifers (see Appendix 7.2).

The Hantush–Jacob solution assumes an infinitely small wellbore radius, i.e., the
wellbore storage is neglected.

2. The extended solution, accounting for the wellbore storage, written for the
drawdown in the observation well (Lai and Su 1974), is:

s ¼ Q
4pT

FL
r2wS
4Tt

;
r
rw

;
rw
B
; S

r2w
r2c

� �
; ð3:5Þ
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FL u; b1; b2; b3ð Þ ¼ 8
b3
p

Z1
0

1� exp � s2 þ b22
4u
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s

s2 þ b22
�

(

� J0 b1sð Þ s2 þ b22
� �

Y0 sð Þ � 2b3sY1 sð Þ	 
� Y0 b1sð Þ s2 þ b22
� �

J0 sð Þ � 2b3sJ1 sð Þ	 

s2 þ b22
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J0 sð Þ � 2b3sJ1 sð Þ	 
2 þ s2 þ b22
� �

Y0 sð Þ � 2b3sY1 sð Þ	 
2
)
ds ;

ð3:6Þ

where rw is pumping well radius, m; rc is the casing radius, m; J0 �ð Þ and J1 �ð Þ are
Bessel functions of the first kind of the zero and the first order; Y0 �ð Þ and Y1 �ð Þ are
Bessel functions of the second kind of the zero and the first order (see
Appendix 7.13).

3. The extended solution accounting for the wellbore storage, written for the
drawdown in the pumping well (Lai and Cheh-Wu Su 1974), is:

sw ¼ Q
4pT

FL
r2wS
4Tt

;
rw
B
; S

r2w
r2c

� �
; ð3:7Þ

FL u; b2; b3ð Þ ¼ 32
b23
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1� exp � s2 þ b22
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s

s2 þ b22
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� �

J0 sð Þ � 2b3sJ1 sð Þ	 
2 þ s2 þb22
� �

Y0 sð Þ � 2b3sY1 sð Þ	 
2
)
ds ;

ð3:8Þ

where sw is the drawdown in the pumping well, m.
4. Hantush solution for a horizontally anisotropic aquifer (Hantush 1966;

Hantush and Thomas 1966) is:

s ¼ Q

4p
ffiffiffiffiffiffiffiffiffi
TxTy

p W
r2 Ty cos2 hþ Tx sin2 h
� �

S

4TxTyt
;
r
B

" #
; ð3:9Þ

with the leakage factor for the horizontally anisotropic aquifer of:

B ¼
ffiffiffiffiffiffiffiffiffi
Txm0

k0

r
; ð3:10Þ

where Tx ¼ kxm and Ty ¼ kym are the transmissivities of the aquifer in two per-
pendicular horizontal directions, m2/d; kx; ky are the hydraulic conductivities in two
perpendicular directions, m/d; h is the angle in degrees between the x axis and the
line connecting the pumping and observation wells (Fig. 3.3b).

The Eq. 3.9 implies that the abscissa coincides with the direction of anisotropy
(Fig. 3.3b). For the case where the coordinate axes do not coincide (Fig. 3.3c), see
comments to the analogous solution (Eq. 1.10) in a nonleaky aquifer.
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Unlike all transient solutions given in this section, Eq. 3.9 is used to determine
the transmissivities (Tx; Ty), the storage coefficient of the main aquifer (S), and the
leakage factor (B), which can be evaluated from (Eq. 3.10).

Steady-State Flow Equations
1. The drawdown in the observation well (De Glee 1930; Jacob 1946)

sm ¼ Q
2pT

K0
r
B

� 

: ð3:11Þ

2. The drawdown in the pumping well

smw ¼ Q
2pT

ln
1:12B
rw

; ð3:11aÞ

where sm; smw are the drawdowns in the observation and the pumping wells during
steady-state period, m; K0 �ð Þ is modified Bessel function of the second kind of the
zero order (see Appendix 7.13).

Equation 3.11a follows from an approximation of function K0 �ð Þ for small
arguments (see Table A7.24).

In the case of a horizontally anisotropic layer, the transmissivity T in the
solutions (Eqs. 3.11 and 3.11a) is replaced by the effective transmissivity

ffiffiffiffiffiffiffiffiffi
TxTy

p
,

and the leakage factor B is calculated by Eq. 3.10.

Graphic-Analytical Processing
The relationships given in Table 3.1 have been derived from Eqs. 3.1 and 3.11.

To evaluate the parameters of a horizontally anisotropic aquifer using the
graphic-analytical methods, it is necessary: (1) to change the obtained transmis-
sivity, T , to an effective transmissivity,

ffiffiffiffiffiffiffiffiffi
TxTy

p
; (2) to use formula Eq. 3.10 for

specification of the leakage factor, B; (3) to change the obtained hydraulic diffu-
sivity, a, to: a ¼ Tx=S (for h ¼ 0�), a ¼ Ty=S (for h ¼ 90�).

Fig. 3.3 A horizontally anisotropic leaky aquifer: a cross-section, b, c planar view: for the
coordinate axis b coinciding and c not coinciding with the direction of anisotropy
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3.1.2 Semi-infinite Aquifer

The basic assumptions and test conditions (Fig. 3.4) are:

• the main assumptions for an infinite leaky aquifer are given in Sect. 3.1.1;
• the boundary is linear and infinite.

Table 3.1 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight linea, b
T ¼ Q

2p � AK0
r
B

� 

lg s—lg t

Type curveb: lgW u;
r
B

� 

—lg

1
u T ¼ Q

4p � 10D, a ¼ r210E

4

lg s—lg
t
r2

The same
T ¼ Q

4p � 10D, a ¼ 10E

4

lg s—lg r Type curvea: lgK0 bð Þ—lg b
T ¼ Q

2p � 10D, B ¼ 10�E

s1 � s2ð Þ—lg t Horizontal straight lineb
T ¼ Q

2p � A K0
r1
B

� 

� K0

r2
B

� 
h i
A is the intercept of the straight line on the ordinate axis (see Sect. 12.1.2); D, E are the shifts of
the plots of the actual and type curves (see Sect. 12.1.3) in the vertical (D) and horizontal (E)
directions; s1; s2; r1; r2 are the drawdown (s) and distance to the pumping well (r) for the first and
second observation wells, respectively
aBased on drawdown values for steady-state flow period
bGiven the leakage factor B

Fig. 3.4 A semi-infinite leaky aquifer. The dashed line on the right shows the image well. Lw, Lp
are the distances from the pumping and observation wells to the boundary, respectively
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Two variants of boundary conditions are considered (see Fig. A3.1):
(1) constant-head boundary and (2) impermeable boundary.

To solve the problem, the image-well method is used: a single image well is
introduced (for the distance to the image well and the sign of its discharge, see
Fig. A3.2).

Basic Analytical Relationships
Transient-Flow Equation

s ¼ Q
4pT

W
r2

4at
;
r
B

� �
�W

q2

4at
;
q
B

� �� �
; ð3:12Þ

where the signs “+” and “−” correspond to constant-head and impermeable
boundary conditions, respectively; q is the distance between the real observation
well and the image well (see Fig. A3.2 and Eq. A3.1), m.

Steady-State Flow Equation

sm ¼ Q
2pT

K0
r
B

� 

� K0

q
B

� 
h i
: ð3:13Þ

Graphic-Analytical Processing
The relationship given in Table 3.2 has been derived from Eq. 3.13.

3.1.3 Strip Aquifer

The basic assumptions and test conditions (Fig. 3.5) are:

• the main assumptions for an infinite leaky aquifer are given in Sect. 3.1.1;
• the two aquifer boundaries are approximated by two infinite parallel straight lines.

Three variants of boundary conditions are considered (see Fig. A3.3): (1) two
constant-head boundaries, (2) two impermeable boundaries, and (3) mixed
boundary conditions—constant-head and impermeable boundaries.

To solve the problem, the image-well method is used: image wells form an
infinite row (for the distances to the image wells and the signs of their discharges,
see Fig. A3.4).

Table 3.2 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight linea
T ¼ Q

2p � A K0
r
B

� 

� K0

q
B

� 
h i
aBased on drawdown values for steady-state flow period given the leakage factor B

78 3 Leaky Aquifers



Fig. 3.5 A leaky aquifer, bounded by two parallel boundaries (strip aquifer). L is the width of the
strip aquifer

Basic Analytical Relationships
Transient-Flow Equations
Constant-head boundary conditions

1. Solution based on the superposition principle:

s ¼ Q
4pT

W
r2

4at
;
r
B

� �
þ
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i
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4at

;
q j
i

B

 !( )
: ð3:14Þ

where n ! 1 is the number of reflections from a boundary; q j
i is the distance

between the real observation well and the j-th image well reflected from the left
(i = 1) or right (i = 2) boundary (see Fig. A3.4): determined by Eqs. A3.3 and
A3.4, m.

2. Green’s function solution (Hantush and Jacob 1955a):

s ¼ Q
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where bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ L

pB

� �2
s

; L is the width of the strip aquifer, m; Lw and Lp are the

distances from the pumping well and the observation well to the left boundary, m; y—
see Eq. A3.2, m; erfc �ð Þ is the complementary error function (see Appendix 7.12).
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Impermeable boundary conditions
1. Solution based on the superposition principle:

s ¼ Q
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2. Green’s function solution (Hantush and Jacob 1955a):
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Combined boundary condition: constant-head at one aquifer boundary and
impermeable at the other

Solution based on the superposition principle:

s ¼ Q
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Steady-State Flow Equations
Constant-head boundary conditions

1. Solution based on superposition principle:

sm ¼ Q
2pT
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r
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2. Green’s function solution (Hantush and Jacob 1954):

sm ¼ Q
2pT
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Impermeable boundary conditions
1. Solution based on the superposition principle:

sm ¼ Q
2pT
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r
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þ
Xn
j¼1

X2
i¼1

K0
q j
i

B

 !( )
: ð3:21Þ

2. Green’s function solution (Hantush and Jacob 1954):

sm ¼ Q
2pT
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Combined boundary condition: constant-head at one aquifer boundary and imper-
meable at the other

1. Solution based on superposition principle:

sm ¼ Q
2pT
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2. Green’s function solution (Hantush and Jacob 1954):

sm ¼ Q
2pT

X1
n¼1

4
�1ð Þn
b2n

exp � py
2L

b2n
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sin
2n� 1ð Þp Lp � 2L

� �
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cos
2n� 1ð Þp Lw � Lð Þ
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� �
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ð3:24Þ

where b2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1ð Þ2 þ 2L

pB

� �2
s

. Here, Lp and Lw are the distances from the

observation and pumping wells to the constant-head boundary, m.

Graphic-Analytical Processing
The relationship given in Table 3.3 has been derived from Eqs. 3.19–3.24.

Table 3.3 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight linea
T ¼ Q

2p � A f

f is the expression in Eqs. 3.19–3.24, following the ratio Q/(2pT)
aBased on the drawdown values for steady-state flow period given the leakage factor B
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3.1.4 Wedge-Shaped and U-Shaped Aquifers

Solutions for the drawdown in leaky aquifers with boundaries of those types are
constructed with the use of superposition principle, similarly to the solutions for
nonleaky aquifers (see Sects. 1.1.4 and 1.1.5). Here, instead of the well-function
W uð Þ, a well-function for leaky aquifers W u; bð Þ is used. For example, for a leaky
aquifer with two intersecting constant-head boundaries, the transient solution (see
Eq. 1.33) can be written as

s ¼ Q
4pT

W
r2

4at
;
r
B

� �
þ
Xn
j¼1

�1ð Þ jW q2j
4at

;
qj
B

 !" #
; ð3:25Þ

whereas for the drawdown during a steady-state flow period under such conditions:

sm ¼ Q
2pT

K0
r
B

� 

þ
Xn
j¼1

�1ð Þ jK0
qj
B

� 
" #
; ð3:26Þ

where qj and n in Eqs. 3.25 and 3.26 see in Sect. 1.1.4.1.

3.1.5 Circular Aquifer

The basic assumptions and conditions (Fig. 3.6) are:

• the main assumptions for an infinite leaky aquifer are given in Sect. 3.1.1;
• the boundary is a circular boundary of groundwater flow passing along the outer

contour of the aquifer;
• the pumping well is located in the center of the circular aquifer (concentrically)

or shifted from the center (eccentrically).

One of two boundary conditions is specified on the outer contour of the aquifer
system (see Fig. A3.10): (1) constant-head boundary or (2) impermeable boundary.

Basic Analytical Relationships
Transient Flow Equations

1. The pumping well is located in the center of the circular aquifer (Fig. 3.6a, c).
1.1. A constant-head boundary is specified on the outer contour of the aquifer

(Jacob 1946; Hantush and Jacob 1960):
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Fig. 3.6 Circular leaky aquifer system. a, bCross-sections, c, d planar views; a, c the pumping well
is located in the center of the aquifer or b, d is shifted from the center. Lw, Lp are the distances from the
pumping and observation wells to the center of the circular aquifer; R is the radius of the circle
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where xn are positive roots of the equation J0 xnð Þ ¼ 0 (see Appendix 7.15); R is the
radius of a circular aquifer, m.

1.2. The aquifer contour is an impermeable boundary (Hantush and Jacob 1960):
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where xn;1 are positive roots of the equation J1 xn;1
� � ¼ 0 (see Appendix 7.15); I0 �ð Þ

and I1 �ð Þ are modified Bessel functions of the first kind of the zero and the first
order; K0 �ð Þ and K1 �ð Þ are modified Bessel functions of the second kind of the zero
and the first order (see Appendix 7.13).

2. The pumping well is located off-centered in a circular aquifer (Fig. 3.6b, d).
2.1. The aquifer contour is a constant-head boundary (Hantush and Jacob 1960):

s ¼ Q
2pT

K0
r
B

� 

� K0

R
B

� �
I0

Lw
B

� �
I0

Lp
B

� ��
I0

R
B

� �
�

�

� 2
X1
m¼1

Km
R
B

� �
Im

Lw
B

� �
Im

Lp
B

� ��
Im

R
B

� �
cos mhð Þ�

� 2
X1
n¼1

J0 xn
Lw
R

� �
J0 xn

Lp
R

� �

x2n þ
R2

B2

� �
J21 xnð Þ

exp � x2n þ
R2

B2

� �
at
R2

� �
�

�4
X1
m¼1

X1
n¼1

Jm xn;m
Lw
R

� �
Jm xn;m

Lp
R

� �

x2n;m þ R2

B2

� �
J2mþ 1 xn;m

� � cos mhð Þ exp � x2n;m þ R2

B2

� �
at
R2

� ��
; ð3:29Þ

where xn;m are positive roots of equation Jm xn;m
� � ¼ 0 (see Appendix 7.15); Jm �ð Þ is

Bessel function of the first kind of the m order; Im �ð Þ and Km �ð Þ are modified Bessel
functions of the first and the second kind of the m order (see Appendix 7.13); h is
the angle between vectors from the center of the circular aquifer to the pumping and
observation wells, respectively (Fig. 3.6d), degree: it is determined from Eq. 1.69;
Lw; Lp are the distances from the pumping and observation wells to the center of
the circular aquifer, m.

2.2. The aquifer contour is an impermeable boundary (Hantush and Jacob 1960):
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ð3:30Þ
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where yn;m are positive roots of equation J0m yn;m
� � ¼ 0 (see Appendix 7.15).

Steady-State Flow Equations
1. The pumping well is located in the center of a circular aquifer (Fig. 3.6a, c).
1.1. The outer contour of the aquifer is a constant-head boundary.
1.1.1. The drawdown in the observation well (Jacob 1946) is:

sm ¼ Q
2pT

K0
r
B
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R
B

� �
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B

� 
�
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R
B

� �� �
: ð3:31Þ

1.1.2. The solution for the drawdown in the pumping well is:

smw ¼ Q
2pT

K0
rw
B
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� K0

R
B

� ��
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R
B

� �� �
: ð3:32Þ

The solution (Eq. 3.32) has been derived from Eq. 3.31. For practical calcula-
tions, K0 rw=Bð Þ can be replaced by ln 1:12B=rwð Þ.

1.2. The aquifer contour is an impermeable boundary.
1.2.1. The drawdown in the observation well (Bochever 1963) is:

sm ¼ Q
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Equation 3.33, which takes into account the wellbore storage, can be applied to
aquifers of arbitrary radius (R); however, the simplified solution below is quite
enough for practical calculations when R=rw [ 5 (Hantush and Jacob 1960):
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1.2.2. The solution for the drawdown in the pumping well (Bochever 1968) is:

smw � Q
2pT

ln
1:123B
rw

þK1
R
B

� ��
I1

R
B

� �� �
: ð3:35Þ

The solution (Eq. 3.35) follows from Eq. 3.34.
2. The pumping well is located off-center in a circular aquifer (Fig. 3.6b, d).
2.1. The outer contour of the aquifer is a constant-head boundary.
2.1.1. The drawdown in the observation well (Hantush and Jacob 1960) is:
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2.1.2. The drawdown in the pumping well (Hantush and Jacob 1960) is:
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2.2. The aquifer contour is an impermeable boundary.
2.2.1. The drawdown in the observation well (Hantush and Jacob 1960) is:
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2.2.2. The drawdown in the pumping well is:
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ð3:39Þ

The solution (Eq. 3.39) has been derived from solution Eq. 3.38.

3.2 Leaky Aquifer with Transient Flow in the Adjacent
Aquifers

This section gives transient analytical solutions for a leaky aquifer with the hydraulic
head in the adjacent aquifer varying because of pumping. Two configurations offlow
domain are considered: an aquifer of infinite lateral extent (Sect. 3.2.1) and a circular
aquifer (Sect. 3.2.2). The solutions are used to determine the transmissivity and
hydraulic diffusivity of the main and adjacent aquifers (T1; a1; T2; a2) and the
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leakage factor for the main aquifer (B1). The hydraulic parameters are derived from
the data on the drawdown in the main and adjacent aquifers.

3.2.1 Aquifer of Infinite Lateral Extent

The basic assumptions and conditions (Fig. 3.7) are:

• the leaky aquifer system consists of two confined isotropic aquifers separated by
an aquitard;

• the main aquifer (1) is penetrated by the pumping well;
• the adjacent aquifer (2) is an unpumped aquifer; the water level in this aquifer

changes during the pumping test because of pumping;
• the initial water levels in the aquifers can be either the same or different;
• the aquifer has no lateral boundaries (infinite in the horizontal plane);
• the pumping well fully penetrates the main aquifer; the wellbore storage is not

taken into account;
• the aquitard storage is neglected.

The drawdown is determined at any distance from the pumpingwell in themain and
adjacent aquifers. A characteristic plot of drawdown in the observation well located in
themain aquifer is given in Fig. 12.22 (curve 3). For solutions for the drawdown in the
case of simultaneous water withdrawal from two aquifers, see Sect. 10.3.

Basic Analytical Relationships
Transient Flow Equations (Hantush 1967):

1. The drawdown in the main aquifer is

sð1Þ ¼ Q
2p T1 þ T2ð Þ w1 � w2 þw3 þw4ð Þ: ð3:40Þ

Fig. 3.7 A leaky aquifer with transient flow in the adjacent aquifer. The main aquifer is located in
different parts of the cross-section: a in the lower part, and b in the upper part
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2. The drawdown in the adjacent aquifer is:

sð2Þ ¼ Q
2p T1 þ T2ð Þ w1 � w2ð Þ; ð3:41Þ
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or in another form:
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B2 ¼
ffiffiffiffiffiffiffiffiffiffi
T2

m0

k0

r
¼ B1

ffiffiffiffiffi
T2
T1

r
; ð3:53Þ

where s 1ð Þ; s 2ð Þ are the drawdown values in the observation wells in the main and
the adjacent aquifer, respectively, m; T1 ¼ k1m1 and T2 ¼ k2m2 are the transmis-
sivities of the main and adjacent aquifers, respectively, m2/d; k1; m1 and k2; m2 are
the hydraulic conductivities (m/d) and thicknesses (m) of the main and adjacent
aquifers; a1 ¼ T1=S1 and a2 ¼ T2=S2 are the hydraulic diffusivities of the main and
adjacent aquifers, respectively, m2/d; S1 and S2 are specific storages of the main and
adjacent aquifers, respectively, dimensionless; k0 and m0 are the hydraulic con-
ductivity (m/d) and thickness (m) of the aquitard, respectively.

3. The drawdown in the main aquifer, when the main and adjacent aquifers have
the same hydraulic diffusivity:

sð1Þ ¼ Q
4p T1 þ T2ð Þ W
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4at
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r
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where a ¼ a1 ¼ a2 is the hydraulic diffusivity of the main and adjacent aquifers,
m2/d; W �ð Þ is the well-function (see Appendix 7.1).

4. The drawdown in the adjacent aquifer, when the main and adjacent aquifers
have the same hydraulic diffusivity is:

sð2Þ ¼ Q
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Quasi-Steady-State Flow Equations (Hantush 1967)
1. The drawdown in the main aquifer is:

sð1Þ ¼ Q
4p T1 þ T2ð Þ ln
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a� ¼ 2a1a2
a1 þ a2

: ð3:57Þ

2. The drawdown in the adjacent aquifer is:

sð2Þ ¼ Q
4p T1 þ T2ð Þ ln

2:25a�t
r2

� 2K0
r
B�
� 
� �

: ð3:58Þ

Graphic-Analytical Processing
The relationship given in Table 3.4 has been derived from Eq. 3.56 or 3.58.
Although those solutions have been derived from transient-flow as in Eq. 3.54 or
Eq. 3.55 for equal hydraulic diffusivities in the main and adjacent aquifers, the
straight-line method still can be used when this condition is not satisfied.
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3.2.2 Circular Aquifer

The basic assumptions and conditions (Fig. 3.8) are:

• the main assumptions for infinite leaky aquifer are given in Sect. 3.2.1;
• the outer contour of the aquifer is a circular boundary of groundwater flow;
• the pumping well is located in the center of the circular aquifer system, in either

its top or bottom aquifer.

The outer contour of the aquifer system (Fig. A3.10a, c) is either
(1) constant-head boundary or (2) impermeable boundary.

Basic Analytical Relationships
Transient Flow Equations

1. The outer contour of the aquifer is a constant-head boundary (Hantush 1967).
1.1. The drawdown in the main aquifer is:

Table 3.4 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Straight line
T1 þ T2 ¼ 0:183Q

C

C is the slope of the straight line (see Sect. 12.1.1)

Fig. 3.8 Circular leaky aquifer system with transient flow in the adjacent aquifer: a cross-section
and b planar view. R is the radius of the circle
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where B�; B1; B2 are determined by Eqs. 3.49–3.53.
1.1. The drawdown in the adjacent aquifer is:
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2. The contour of the aquifer is an impermeable boundary. The drawdown in the
main and adjacent aquifers (Bochever 1968) is:
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where “�” denotes the sign “+” corresponding to the drawdown determined in the
observation well in the main aquifer (s ¼ sð1Þ), and “−” is the drawdown deter-
mined in the observation well in the adjacent aquifer (s ¼ sð2Þ).

Steady-State Flow Equations (Hantush 1967)
The steady-state flow regime will be reached when the outer contour of the circular
aquifer is a constant-head boundary.

1. The drawdown in the main aquifer is:
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2. The drawdown in the adjacent aquifer is:
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During the steady-state flow period, the drawdown values in the interacting
aquifers are nearly the same. The comparison of solutions (Eqs. 3.65 and 3.66) with
solutions for an aquifer of infinite lateral extent (Eqs. 3.56 and 3.58) shows them to
differ in the second term in the square brackets, which tends to zero with increasing
radius R and becomes significant when the aquifer radius is small.
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3.3 Leaky Aquifer with Allowance Made for Aquitard
Storage

This section gives transient analytical solutions for a leaky aquifer with infinite
lateral extent, taking into account the aquitard storage, and the formation of a
depression cone in the adjacent aquifer under the influence of the pumping test. The
solutions are used to evaluate the hydraulic parameters of this system based on data
on the drawdown in the main aquifer, the adjacent aquifer, and the aquitard.

Some particular solutions for a slightly leaky aquitard (Neuman and
Witherspoon 1968) are also presented: the drawdown in the aquitard can be mea-
sured and used for data analysis, but the leakage itself can be neglected in the
evaluation of parameters of the main aquifer, i.e., the aquifer being tested is con-
sidered as an isolated confined layer (see Sect. 1.1.1).

The basic assumptions and conditions (Fig. 3.9) are:

• the leaky aquifer system is a confined system comprising two isotropic aquifers
separated by an aquitard; a particular case is an aquifer in contact with a
semi-infinite compressible aquitard underlying or overlying it (Fig. 3.10);

• the main aquifer (1) is penetrated by the pumping well;
• the adjacent aquifer (2) is an unpumped aquifer; the water level in the adjacent

aquifer remains constant or varies as a result of pumping;
• the aquitard storage is taken into account;
• the aquifer has no lateral boundaries (infinite in the horizontal plane);
• the pumping well fully penetrates the main aquifer; the storage of the well is not

taken into account.

The drawdown is determined at any distance from the pumping well in the main
and adjacent aquifers, as well as in any point of the aquitard. Typical drawdown plots
in an observation well in the main aquifer are given in Fig. 12.22 (curves 2, 4).

Fig. 3.9 A leaky aquifer with allowance made for aquitard storage. The main aquifer is located in
different parts of the cross-section: a in the lower part, and b in the upper part

3.3 Leaky Aquifer with Allowance Made for Aquitard Storage 93

http://dx.doi.org/10.1007/978-3-319-43409-4_1
http://dx.doi.org/10.1007/978-3-319-43409-4_12


Basic Analytical Relationships
Transient Flow Equations (Neuman and Witherspoon 1969a, b)

1. Solutions for the drawdown in the main aquifer (1) and the separating aquitard
at a constant water level in the adjacent aquifer (2) during the pumping test are
considered.

1.1. The drawdown in the main aquifer is:

sð1Þ ¼ Q
2pT1

Z1
0

1� exp �s2uk
� �	 


J0 x1ð Þ ds
s
; ð3:67Þ

uk ¼ T1t
S1r2

k1: ð3:68Þ

1.2. The drawdown in the aquitard is:
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where s0 is the drawdown values in the observation wells in the aquitard, m; x1 in
(Eqs. 3.67 and 3.69) is calculated as

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1s2 � r=B1ð Þ2s cotan s

q
; ð3:70Þ

B1—see formula (Eq. 3.52); S1 is the storage coefficient of the main aquifer,
dimensionless; zp is the distance from the observation point in the separating
aquitard to the top (or bottom) of the main aquifer (Fig. 3.9), m; k1—see formula
(Eq. 3.81).

1.3. The drawdown in the aquitard for a slightly leaky aquifer (Neuman and
Witherspoon 1968) is:
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where

u ¼ np
ffiffiffiffiffi
a0t

p

m0 ; ð3:72Þ

or an approximation for long time periods:
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s0 ¼ Q
4pT1
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where a1 ¼ T1=S1 and a0 ¼ k0m0=S0 are the hydraulic diffusivities of the main
aquifer and the aquitard, respectively, m2/d; S0 is the storage coefficient of the
aquitard, dimensionless; W �ð Þ is the well-function (see Appendix 7.1).

For a leaky aquifer with steady-state flow in the adjacent aquifer, the hydraulic
parameters will be calculated based on data on the drawdown in the main aquifer
and the aquitard. Equations 3.67 and 3.69 are used to evaluate the transmissivity
and the storage coefficient of the main aquifer (T1; S1), the leakage factor (B1), and
the storage coefficient of the aquitard (S0). The parameters determined by the
solution neglecting the leakage (Eq. 3.71) are the transmissivity and the hydraulic
diffusivity of the main aquifer (T1; a1), as well as the hydraulic diffusivity of the
aquitard (a0).

2. Solutions for the drawdown in the main aquifer (1), the adjacent aquifer (2),
and the aquitard at a varying hydraulic head in the adjacent aquifer during the
pumping test are considered.

2.1. The drawdown in the main aquifer (1) is:
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2.2. The drawdown in the adjacent aquifer (2) is:
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2.3. The drawdown in the aquitard is:
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where
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k2 ¼ r2S2
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B1—see Eq. 3.52, B2—see Eq. 3.53.
If the expression under the square root in the right-hand part of the equalities

(Eq. 3.77) is negative, then, for x2
1\0, we assign J0 x1ð Þ ¼ 0, and for x2

2\0,
accordingly, J0 x2ð Þ ¼ 0.

For a leaky aquifer with transient flow in the adjacent aquifer, the hydraulic
parameters will be calculated based on data on the drawdown in both aquifers and
the aquitard. Equations 3.74–3.76 are used to evaluate the transmissivity of the
main and adjacent aquifers (T1; T2), the storage coefficients of the main and
adjacent aquifers (S1; S2), the leakage factor for the main aquifer (B1), and the
storage coefficient of the aquitard (S0).

3. Solutions for the drawdown in the semi-infinite aquitard in the vertical plane
(Fig. 3.7).

3.1. The drawdown in the semi-infinite aquitard is:
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u ¼ r2

4a1t
¼ r2S1

4T1t
; ð3:84Þ

where k0 and S0s are the hydraulic conductivity (m/d) and the specific storage (1/m)
of the aquitard.
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3.2. The drawdown in the semi-infinite aquitard for a slightly leaky aquifer
(Neuman and Witherspoon 1968) is:

s0 ¼ Q
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 !
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or an approximation for a long time periods:

s0 ¼ Q
4pT1

W
r2

4a1t

� �
; ð3:88Þ

where WNW u; u0ð Þ is a special function (see Appendix 7.8).
Data on the drawdown in the semi-infinite aquitard along with Eq. 3.83 are used

to evaluate the transmissivity and the storage coefficient of the main aquifer (T1; S1),
as well as the hydraulic conductivity and the specific storage of the aquitard (k0; S0s).
In the case of pumping from a slightly leaky aquifer (Eq. 3.85), the parameters to be
determined are the transmissivity and hydraulic diffusivity of the main aquifer
(T1; a1) and the hydraulic diffusivity of the aquitard (a0).

Fig. 3.10 An aquifer in contact with a an overlying and b an underlying semi-infinite
compressible aquitard
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3.4 A Partially Penetrating Well in a Leaky Aquifer

This section gives transient and steady-state analytical solutions for the drawdown
in a leaky aquifer of infinite lateral extent at a constant head in the adjacent aquifer.
The transient solution takes into account the vertical anisotropy of the leaky aquifer
and partially penetrating pumping and observation wells. The drawdown in the
leaky aquifer (Eqs. 3.89 and 3.90) can be used to evaluate the hydraulic parameters
of the aquifer: the horizontal and vertical hydraulic conductivity (kr, kz), the storage
coefficient of the leaky aquifer (S), and the leakage factor, depending on the hor-
izontal hydraulic conductivity (Eq. 3.91).

The basic assumptions and conditions (Fig. 3.11) are:

• the main assumptions for infinite leaky aquifer are given in Sect. 3.1.1;
• the main aquifer is vertically anisotropic;
• the pumping well partially penetrates the aquifer.

The drawdown is determined at any point of the main aquifer. The solutions
given in this section can be applied to any combination of the aquifers and aquitards
shown in Fig. 3.2.

Basic Analytical Relationships (Hantush 1964)
Transient Flow Equations

The drawdown in the piezometer is:
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Fig. 3.11 A partially
penetrating pumping well
in a leaky aquifer with a
piezometer and a partially
penetrating observation well
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and the average drawdown in the observation well is:
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where b ¼
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; zw1 and zw2 are the vertical distances from the

leaky aquifer top to the bottom of the pumping-well screen and to the pumping-well
screen top, m (Fig. 3.11); zp1 and zp2 are the same characteristics for the observation
well; LTp is the vertical distance from the leaky aquifer top to the open part of

the piezometer, m; v ¼ ffiffiffiffiffiffiffiffiffiffi
kr=kz

p
is anisotropy factor, dimensionless; kr and kz

are the horizontal and vertical hydraulic conductivities, respectively, m/d; lp and lw
are the screen lengths of the observation and pumping wells, respectively, m.

Steady-State Flow Equations
The drawdown in the piezometer is:
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and the averaged drawdown in the observation well is:
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Graphic-Analytical Processing
The relationship given in Table 3.5, has been derived from Eqs. 3.92 and 3.93 with
no allowance made for the anisotropy of the leaky aquifer: kr ¼ k, Br ¼ B.
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3.5 Two-Layer Aquifer Systems

The section considers:

(1) an unconfined aquifer system of infinite lateral extent (Sect. 3.5.1);
(2) a confined aquifer system with a circular constant-head boundary (Sect. 3.5.2).

3.5.1 Two-Layer Unconfined Aquifer System of Infinite
Lateral Extent

The basic assumptions and conditions (Fig. 3.12) are:

• the aquifer system consists of two isotropic aquifers with different hydraulic
characteristics;

• the aquifer system is of infinite lateral extent;
• the top is an unconfined aquifer with a relatively low permeability;
• the bottom is a confined main aquifer with a relatively high permeability;
• the pumping well is fully penetrating and located in the main aquifer; its storage

is neglected;
• the flow is vertical in the top aquifer and horizontal in the bottom aquifer.

Fig. 3.12 Two-layer
unconfined aquifer system

Table 3.5 Graphic-analytical evaluation of parameters

Plot Method Relationship

s—lg t Horizontal straight linea
k ¼ Q

2pm � A f

f is the expression in curly brackets in Eq. 3.92 or Eq. 3.93
aBased on the drawdown value for the steady-state flow period given the leakage factor B
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The drawdown is determined at any distance from the pumping well in the main
aquifer. A typical plot of drawdown in the observation well in the main aquifer is
given in Fig. 12.23.

Basic Analytical Relationships
Transient Flow Equations

1. The Mironenko solution (Mironenko and Serdyukov 1968) is:

s ¼ Q
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where k0; Sy; m0 are the hydraulic conductivity (m/d), the specific yield (dimen-
sionless), and the initial saturated thickness (m) of the unconfined aquifer,
respectively.

The solution (Eq. 3.94) is used for observation wells at distances less than the
conventional radius of influence: r
R tð Þ. Otherwise, the drawdown is assumed
zero.

Data on the drawdown in the main aquifer are used to derive from Eq. 3.94 the
transmissivity and the storage coefficient of the confined aquifer (T ; S), as well as
the specific yield and the hydraulic conductivity of the unconfined aquifer (Sy; k0).

2. Cooley–Case solution (Cooley and Case 1973). The solution is given for short
and long time periods.

2.1. For short time periods, t
 0:1 � m0S0=k0:
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where B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm0=k0

p
is the leakage factor, m; H u; bð Þ is a special function (see

Appendix 7.4).
2.2. For long time periods, t� 10 � m0S0=k0:
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where
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g ¼ Sþ S0 þ Sy
S
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g2 ¼
Sy

Sþ S0 þ Sy
: ð3:103Þ

3. A simplified solution of Eq. 3.97, neglecting the storage coefficient of the
main aquifer (g ! 1) is:

s ¼ Q
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where

u ¼ r2Sy
4Tt

: ð3:105Þ

Data on the drawdown in the main aquifer are used to evaluate, from Eqs. 3.96
and 3.97, the transmissivity and the storage coefficient of the confined main aquifer
(T; S), as well as the hydraulic conductivity, storage coefficient, and specific yield
of the unconfined low-permeability aquifer (S0; Sy; k0). The parameters determined
from Eq. 3.104 are T ; Sy; k0.

Equations 3.96 and 3.97 can be written with the effect of capillary fringe taken
into account (Cooley and Case 1973).
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3.5.2 Circular Two-Layer Confined Aquifer System

The basic assumptions and conditions (Figs. 3.13 and A3.10a) are:

• the aquifer system comprises two confined isotropic aquifers: an aquifer with a
relatively high permeability (main) and an aquifer with a relatively low per-
meability (adjacent); the main aquifer can lie either in the bottom of the
two-layer system (Fig. 3.13a, c), or in its top (Fig. 3.13b, d);

• the boundary is circular, constant-head, and running along the outer contour of
the aquifer (see Fig. A3.10a);

• the pumping well is fully penetrating; it is located in the center of the circle in
the main aquifer.

The drawdown is determined for the period of steady-state flow at any point in
the main and adjacent aquifers given the hydraulic conductivities of these aquifers.

Fig. 3.13 Two-layer aquifer system with a circular constant-head boundary: a, b the
low-permeability aquifer adjoins, a at the top and b at the bottom, an aquifer, the water level in
which remains constant during the pumping test; c, d an isolated two-layer aquifer system. R is the
radius of the circle
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Two variants are considered:

variant 1—the adjacent aquifer adjoins the main (pumped) aquifer from one side
and from the other side, the aquifer, the water level of which remains constant
throughout the pumping-test period (Fig. 3.13a, b);
variant 2—aquicludes overlay and underlie the two-layer aquifer system
(Fig. 3.13c, d).

Basic Analytical Relationships
Steady-State Flow Equations (Hantush and Jacob 1955c)

1. Solutions for the first variant (Fig. 3.13a, b)
1.1. The drawdown in the main aquifer is:

sm ¼ Q
2pkm

ln
R
r
� k0

k

X1
n¼1

cosh xn
m0

R

� �
cosh xn

m� z
R

� 
kn
dn

" #
; ð3:106Þ

kn ¼ J0 xn
r
R

� 
 4
x2nJ

2
1 xnð Þ ; ð3:107Þ

dn ¼ 1þ k0

k

� �
cosh xn

mþm0

R

� �
� 1� k0

k

� �
cosh xn

m� m0

R

� �
; ð3:108Þ

where xn are positive roots of equation J0 xnð Þ ¼ 0 (see Appendix 7.15); k; k0 are the
hydraulic conductivities of the main and adjacent aquifers, m/d; m; m0 are the
thicknesses of the main and adjacent aquifers, m; R is the radius of a circular
aquifer, m; z is the distance from the observation point in the main aquifer to the top
(or bottom) of the same (Fig. 3.13), m.

1.2. The drawdown in the adjacent aquifer is:

s0m ¼ Q
2pkm

X1
n¼1

sinh xn
m
R

� 

sinh xn

m0 � z0

R

� �
kn
dn

; ð3:109Þ

where z0 is the distance from the observation point in the adjacent aquifer to the top
(or bottom) of the main aquifer (Fig. 3.13), m.

2. Solutions for the second variant (Fig. 3.13c, d)
2.1. The drawdown in the main aquifer is:

sm ¼ Q
2pkm

ln
R
r
� k0

k

X1
n¼1

sinh xn
m0

R

� �
cosh xn

m� z
R

� 
 kn
en

" #
; ð3:110Þ

en ¼ k0

k
þ 1

� �
sinh xn

mþm0

R

� �
þ k0

k
� 1

� �
sinh xn

m0 � m
R

� �
: ð3:111Þ
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2.2. The drawdown in the adjacent aquifer is:

s0m ¼ Q
2pkm

X1
n¼1

sinh xn
m
R

� 

cosh xn

m0 � z0

R

� �
kn
en
: ð3:112Þ

When the hydraulic parameters of the main and adjacent aquifers are equal, the
two-layer aquifer system can be regarded as a single-layer aquifer with a partially
penetrating pumping well, adjoining its bottom or top (Hantush and Jacob 1955c).

A steady-state solution for the case of a fully penetrating pumping well inter-
secting two aquifers (Fig. 3.14), is considered in (Shchelkachev and Lapuk 1949):

smw ¼ Q
2p k1m1 þ k2m2ð Þ ln

R
rw

; ð3:113Þ

where smw is the drawdown in the pumping well during a steady-state period, m.
The mean hydraulic conductivity of the aquifer system can be calculated as:

�k ¼ k1m1 þ k2m2

m1 þm2
: ð3:114Þ

The solution (Eq. 3.113) is used to evaluate the averaged drawdown in the
pumping well, located in the center of a two-layer aquifer system. This relationship
will hold for a many-layer stratum as well:

smw ¼ Q
2pTR

ln
R
rw

; ð3:115Þ

here TR is the total transmissivity of the multilayer stratum, defined by the formula
(see Eq. A1.8), m2/d.

Fig. 3.14 Two-layer aquifer
system with a circular
constant-head boundary:
the pumping well intersects
two aquifers
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3.6 Multi-aquifer Systems

This section considers aquifer systemswith alternation of aquifers and aquitards. Such
systems can be divided into three- and two-layer systems, depending on the number of
aquitards that are in contact with the main pumped aquifer. The three-layer system
consists of a main aquifer, underlain and overlain by aquitards (see Sect. 3.6.1), while
the two-layer system is a main aquifer underlain or overlain by an aquitard (see
Sect. 3.6.2). For each system, several models can be suggested, depending on the
boundary conditions above and below this system (Figs. 3.15 and 3.17).

Two sets of transient solutions are available for stratified systems: Hantush
solutions (Hantush 1960) and Moench solutions (Moench 1985). The solutions of
those two authors differ by their potentialities.

Hantush solutions are easy-to-use and based on well-known hydrogeological
functions; however, they have some limitations: they describe the drawdown only
in the pumped aquifer, and they are applicable to certain time intervals (for short
and long time periods). The behavior of the drawdown function in the intermediate
time can be described by a linear function (Hantush 1960).

Moench solutions are more universal: the model curve is being constructed for
the entire time interval and the drawdown is calculated in the aquitards as well; the
solutions can account for the wellbore storage and the skin, which is evaluated from
the hydraulic conductivity and the thickness of the wellbore skin (see Appendix 2).

For the multi-aquifer systems, it is assumed that:

• the flow is of infinite lateral extent;
• the flow is vertical in aquitards and horizontal in the main (pumped) aquifer;
• the flow regime in the aquitards is assumed elastic;
• the fully penetrating pumping well is in the main aquifer;
• the water level in the adjacent aquifers remains constant during the pumping test.

The drawdown is determined at any distance from the pumping well in the main
aquifer; for Moench solutions, it is also determined in the aquitards.

Typical plots of the drawdown in an observation well in the main aquifer of a
three-flow system are given in Fig. 12.24.

3.6.1 Three-Layer System

The basic assumptions and conditions (Fig. 3.15) are:

• the aquifer system consists of an isotropic aquifer with a relatively high per-
meability, overlain and underlain by aquitards;

• the main is a high-permeability aquifer containing the pumping well;
• adjacent high-permeability aquifers may lie in the top or bottom of the aquifer

system;
• aquitard storages are taken into account.
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Fig. 3.15 Three-layer systems: a, b the top and bottom are constant-head aquifers—a a confined
aquifer in the top, b an unconfined aquifer in the top; c, d the top is a constant-head aquifer
(c confined, d unconfined), the bottom is an aquiclude; e the top and bottom are aquicludes; f an
aquiclude in the top, a constant head aquifer in the bottom
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Three variants are considered:

variant 1—the top and bottom of the aquifer system are adjacent aquifers with a
constant head (Fig. 3.15a, b);
variant 2—the top and bottom of the aquifer system are aquicludes (Fig. 3.15e);
variant 3—the bottom of the aquifer system is underlain by an aquiclude, while its
top is overlain by an adjacent aquifer (Fig. 3.15c, d), or, conversely, the bottom of
the aquifer system is underlain by an adjacent aquifer, while its top is overlain by an
aquiclude (Fig. 3.15f).

Basic Analytical Relationships
Transient Flow Equations
Hantush solutions (Hantush 1960)
The solutions are given for the drawdown in the main aquifer, separately for short
and long time periods and depending on the chosen variant of the calculation
model.

1. For short time periods, t\0:1m0S0=k0 and t\0:1m00S00=k00 (or t\0:1B2
1S

0=T
and t\0:1B2

2S
00=T):

s ¼ Q
4pT

H
r2S
4Tt

;
r
4

1
B1

ffiffiffiffi
S0

S

r
þ 1

B2

ffiffiffiffiffi
S00

S

r !" #
; ð3:116Þ

B1 ¼
ffiffiffiffiffiffiffiffiffi
T
m0

k0

r
; ð3:117Þ

B2 ¼
ffiffiffiffiffiffiffiffiffiffi
T
m00

k00

r
; ð3:118Þ

where k0; k00 are the hydraulic conductivities of aquitards, m/d; S0; S00 are storage
coefficients of the aquitards, dimensionless; m0; m00 are the thicknesses of the
aquitards, m; H u; bð Þ is a special function (see Appendix 7.4).

Equation 3.116 is applicable to all three variants.
2. For long time periods:
variant 1 (Fig. 3.15a, b)—for t[ 5m0S0=k0 and t[ 5m00S00=k00 (or t[ 5B2

1S
0=T

and t[ 5B2
2S

00=T):

s ¼ Q
4pT

W
r2S
4Tt

1þ S0 þ S00

3S

� �
; r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
B1

� �2

þ 1
B2

� �2
s2

4
3
5; ð3:119Þ

variant 2 (Fig. 3.15e)—for t[ 10m0S0=k0 and t[ 10m00S00=k00 (or t[ 10B2
1S

0=T
and t[ 10B2

2S
00=T):
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s ¼ Q
4pT

W
r2S
4Tt

1þ S0 þ S00

S

� �� �
; ð3:120Þ

variant 3 (Fig. 3.15c, d, f)—for t[ 5m0S0=k0 and t[ 10m00S00=k00 (or
t[ 5B2

1S
0=T and t[ 10B2

2S
00=T):

s ¼ Q
4pT

W
r2S
4Tt

1þ S00 þ S0=3
S

� �
;
r
B1

� �
: ð3:121Þ

Moench solutions (Moench 1985)
The solutions are given as drawdown values in the main aquifer and in the aqui-
tards. The drawdown in the aquitards is determined taking into account the depth to
the piezometer or the screen of the observation well (see zp in Fig. 3.16). For an
aquitard in the top of the main aquifer, this is the distance from the observation
point to the layer bottom; and for an aquitard in the bottom of the main aquifer, the
distance from the observation point to the top of the layer.

1. The drawdown in the main aquifer is:

s ¼ Q
4pT

f t; r; rw; rc; T ; S; S
0; S00;B1;B2; kskin;mskinð Þ; ð3:122Þ

where kskin; mskin are the hydraulic conductivity (m/d) and thickness (m) of the
wellbore skin (see Appendix 2).

2. The drawdown in the top or bottom aquitard is:

s0 ¼ Q
4pT

f t; r; rw; rc; T ; S; S
0; S00;B1;B2; zp; kskin;mskin

� �
; ð3:123Þ

Fig. 3.16 An example
of a three-layer system for
Moench solutions. All
variants of aquifer positions
can be treated (see Fig. 3.15)
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where the distance zp depends on the position of the aquitard relative to the main
aquifer.

The relationships (Eqs. 3.122 and 3.123) are treated by the algorithm of the
program DP_LAQ (see Appendix 5.5).

For a three-layer system, data on the drawdown in the main aquifer (Eqs. 3.116,
3.119–3.122) or in aquitards (Eq. 3.123) are used to evaluate the transmissivity and
storage coefficient of the main aquifer (T; S), the storage coefficients of the aqui-
tards (S0; S00), and the leakage factors through the top and bottom aquitards (B1;B2).

3.6.2 Two-Layer System

The basic assumptions and conditions (Fig. 3.17) are:

• the aquifer system consists of an isotropic aquifer with a relatively high per-
meability, overlain or underlain by aquitard;

• the main is a high-permeability aquifer containing the pumping well;
• adjacent high-permeability aquifer may lie in the top or bottom of the aquifer

system;
• aquitard storage is taken into account.

Two variants are considered:

variant 1—the top or bottom of the aquifer system is adjacent aquifer with a constant
head (Fig. 3.17a–c);
variant 2—aquicludes lie in the top and bottom of the aquifer system (Fig. 3.17d, e).

Basic Analytical Relationships
Transient Flow Equations
Hantush solutions (Hantush 1960)
The solutions are given for the drawdown in the main aquifer, separately for short
and long time periods and depending on the chosen variant of the calculation model.

1. For short time periods t
 0:1m0S0=k0 (or t
 0:1B2S0=T):

s ¼ Q
4pT

H
r2S
4Tt

;
r
4B

ffiffiffiffi
S0

S

r" #
; ð3:124Þ

where the leakage factor is evaluated as B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm0=k0

p
.

Equation 3.124 is applicable to two variants.
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2. For long time periods:
variant 1 (Fig. 3.17a–c)—for t� 5m0S0=k0 (or t� 5B2S0=T):

s ¼ Q
4pT

W
r2S
4Tt

1þ S0

3S

� �
;
r
B

� �
; ð3:125Þ

Fig. 3.17 Two-aquifer systems: a, b the adjacent aquifer with constant head in the top of the
aquifer system is a confined or b unconfined; c the adjacent aquifer with constant head is in the
bottom of the aquifer system; d, e aquicludes in the top and bottom of the aquifer system, an
aquitard d overlays or e underlies the main aquifer
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variant 2 (Fig. 3.17d, e)—for t� 10m0S0=k0 (or t� 10B2S0=T):

s ¼ Q
4pT

W
r2S
4Tt

1þ S0

S

� �� �
: ð3:126Þ

For a two-layer system, in which the aquitard is semi-infinite in thickness
(Fig. 3.18), the drawdown in the main aquifer for all time measurements can be
written as

s ¼ Q
4pT

H
r2S
4Tt

;
r
4

ffiffiffiffiffiffiffiffi
k0S0s
TS

r" #
: ð3:127Þ

The drawdown in the aquitard for such conditions can be derived from solution
(Eq. 3.83).

In the case of a semi-infinite aquitard, Eq. 3.127 is used to evaluate the trans-
missivity and the storage coefficient (T ; S) of the main aquifer and the hydraulic
conductivity and specific storage (k0; S0s) of the aquitard.

Moench solution (Moench 1985)
Moench solutions are used to determine the drawdown in the main aquifer and in
the aquitard. In the aquitard, the depth at which the piezometer or the screen of the
observation well is installed is taken into account (see zp in Fig. 3.19).

1. The drawdown in the main aquifer is:

s ¼ Q
4pT

f t; r; rw; rc; T; S; S
0;B; kskin;mskinð Þ: ð3:128Þ

2. The drawdown in the aquitard is:

s0 ¼ Q
4pT

f t; r; rw; rc; T ; S; S
0;B; zp; kskin;mskin

� �
: ð3:129Þ

Fig. 3.18 Aquifer system
with an aquitard semi-infinite
in thickness
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The relationships (Eqs. 3.128 and 3.129) were treated using the algorithm of the
program DP_LAQ (see Appendix 5.5).

For a two-layer system, data on the drawdown in the main aquifer (Eqs. 3.124–
3.126, 3.128) or in the aquitard (Eq. 3.129) are used to evaluate the transmissivity
and the storage coefficient of the main aquifer (T; S), the storage coefficient of the
aquitard (S0), and the leakage factor (B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tm0=k0
p

).
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Chapter 4
Horizontally Heterogeneous Aquifers

A confined isotropic aquifer comprises two or more horizontally adjacent zones
with different hydraulic properties. The aquifer is of constant thickness. The
pumping and observation wells are fully penetrating.

This chapter considers analytical solutions for calculating the drawdown in the
following horizontally heterogeneous aquifers:

(1) an aquifer comprising two zones separated by a linear boundary (Sect. 4.1);
(2) an aquifer comprising two zones with a common circular boundary (Sect. 4.2);
(3) heterogeneous aquifers with a constant-head boundary (Sect. 4.3).

Transient solutions are used to evaluate the transmissivity and storage coefficient
(or hydraulic diffusivity) of the main and adjacent zones. Steady-state solutions are
used to determine the transmissivities of the two zones. For the majority of solu-
tions, the hydraulic parameters are evaluated based on the drawdown values in both
the main and the adjacent zones.

4.1 Aquifer with Linear Discontinuity

This section gives transient and quasi-steady-state analytical solutions, which are
used to evaluate the drawdown in a horizontally heterogeneous aquifer with a linear
boundary between the two zones.

The basic assumptions and conditions (Fig. 4.1) are:

• the aquifer consists of two zones that are semi-infinite in the horizontal plane
with a common linear boundary;

• the pumping well is located in the main zone;
• the observation well is located in the main or the adjacent zone.

© Springer International Publishing Switzerland 2017
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The drawdown is evaluated in two zones at any distance from the pumping well.
Typical plots of the drawdown in observation wells in the main and adjacent zones
are given in Fig. 12.25a.

The distance (q) from the observation well lying in the main zone (Fig. 4.1b) to
the image well is determined in the same manner as in the case of a semi-infinite
aquifer (see Sect. 1.1.2 and Eq. A3.1), and that for the observation well in the
adjacent zone (Fig. 4.2c), as

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4LwLp

q
; ð4:1Þ

where r is the radial distance from the pumping to the observation well, m; Lw and
Lp are the distances from the pumping well and the observation well to the
boundary between the zones, m.

Fig. 4.1 Horizontally heterogeneous aquifer with two zones. a Cross-section; b, c planar view
with the distance to image wells: the observation well is located in b the main and c the adjacent
zone
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Basic Analytical Relationships

Transient Flow Equation
For these conditions, the solutions of two authors—Maksimov (1962) and Fenske
(1984)—are considered. The solutions yield similar results, though the relationships
given by Fenske have a simpler mathematical representation and introduce no
limitations to the choice of the hydraulic parameters of an aquifer.

1. The Maksimov solution (Maksimov 1962): the drawdown in the main zone is:

sð1Þ ¼ Q
4p T1

W
r2

4a1t

� �
þ T1 � T2

T1 þ T2
W

q2

4a1t

� �
� d1

� �
; ð4:2Þ
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and the drawdown in the adjacent zone is:

sð2Þ ¼ Q
4pT2

2T2
T1 þ T2

W
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4a2t

� �
� d2

� �
; ð4:5Þ
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d21 ¼ T2
T1

d11 � 2T2
T1 þ T2

ln
a1
a2

; ð4:7Þ

where s 1ð Þ; s 2ð Þ are the drawdown values in the observation wells in the main and the
adjacent zone, respectively, m; Q is the discharge rate, m3/d; T1 ¼ k1m and
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T2 ¼ k2m are the transmissivities of the main and adjacent zones, respectively, m2/d;
k1; k2 are the hydraulic conductivities of the main and adjacent zones, respectively,
m/d; m is aquifer thickness, m; a1 ¼ T1=S1 and a2 ¼ T2=S2 are the hydraulic dif-
fusivities of the main and adjacent zones, respectively, m2/d; S1 and S2 are storage
coefficients of the main and adjacent zones, respectively, dimensionless; t is the time
elapsed from the start of pumping, d; W �ð Þ is well-function (see Appendix 7.1).

2. The Fenske solution (Fenske 1984) for the drawdown in the main zone is:

sð1Þ ¼ Q
4p T1

W
r2

4a1t

� �
þ e T1 � x T2

e T1 þx T2
W

q2

4a1t

� �� �
; ð4:8Þ

for the drawdown in the adjacent zone is:

sð2Þ ¼ Q
4p T2

2exT2
e T1 þxT2

W
r2

4a2t

� �
; ð4:9Þ

x ¼ W
L2w þ r2 � Lw � Lp

� �2
4a1t

 !,
W

L2w þ r2 � Lw � Lp
� �2

4a2t

 !
; ð4:10Þ

e ¼ exp � L2w þ r2 � Lw � Lp
� �2

4a1t

 !,
exp � L2w þ r2 � Lw � Lp

� �2
4a2t

 !
; ð4:11Þ

where sign “+” is used for the drawdown evaluated in the adjacent zone and “–”
for the main zone.

Steady-State Flow Equations
Equations 4.2 and 4.5, along with the assumption that for long time periods, d1
(Eq. 4.3) and d2 (Eq. 4.6) are approximately equal to d11 (Eq. 4.1) and d21
(Eq. 4.7), respectively, the solution for a period of quasi-steady-state flow can be
written as (Maksimov 1962):

sð1Þ ¼ Q
4p �T

ln
2:25a1t
rq

þ T2
T1

ln
q
r
�

�T
T1

d11

� �
; ð4:12Þ

sð2Þ ¼ Q
4p �T

ln
2:25a2t

r2
�

�T
T2

d21

� �
; ð4:13Þ

�T ¼ T1 þ T2
2

: ð4:14Þ
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Graphic-Analytical Processing
The relationships given in Table 4.1 have been derived from Eqs. 4.12 and 4.13.

The hydraulic diffusivity (a2) of the adjacent zone, as determined in Table 4.1, is
an overestimate, because the value of d21 is neglected in the calculations.

4.2 Radial Patchy Aquifer

The basic assumptions and conditions (Fig. 4.2) are:

• the aquifer horizontally comprises two zones with different hydraulic parameters
and with a common circular boundary;

• the pumping well is located in the center of the circular zone (wellbore zone),
surrounded by the main zone;

• the observation well is located in the main or wellbore zone;
• the wellbore storage is taken into account in the drawdown estimation.

Table 4.1 Graphic-analytical parameter evaluation

Plot Method Relationship

s(1)—lg t Straight line �T ¼ 0:183Q
C

s(2)—lg t The same
�T ¼ 0:183Q

C
, lg a2 � A

C
þ lg

r2

2:25

s(2)—lg r The same �T ¼ 0:366Q
C

, lg a2 � 2
A
C
� lgð2:25 � tÞ

sð2Þ—lg
t
r2

The same �T ¼ 0:183Q
C

, lg a2 � A
C
� lgð2:25Þ

A is the intercept of the straight line on the ordinate axis (see Sect. 12.1.1); C is the slope of the
straight line (see Sect. 12.1.1); �T is the mean transmissivity (see Eq. 4.14), m2/d

Fig. 4.2 Radially heterogeneous aquifer with two zones: a cross-section; b planar view

4.1 Aquifer with Linear Discontinuity 119

http://dx.doi.org/10.1007/978-3-319-43409-4_12
http://dx.doi.org/10.1007/978-3-319-43409-4_12


The drawdown is determined in two zones at any distance from the pumping
well. A typical plot of the drawdown in an observation well located in the main
zone is given in Fig. 12.25b.

This configuration can be regarded as a homogeneous confined aquifer with a
pumping well surrounded by an area that plays a role of wellbore skin. In this
formulation, analytical solutions enable the estimation of the thickness and the
hydraulic conductivity of the skin, as well as its storage coefficient.

Basic Analytical Relationships

Transient Flow Equation (Yeh et al. 2003)

1. The drawdown in the main zone is:

sð1Þ ¼ Q
4pT2

8
p2rwRþ

Z1
0

1� exp �us2
� �	 
Y0 rc1sð ÞB1 � J0 rc1sð ÞB2

B2
1 þB2

2

ds
s3
; ð4:15Þ

B1 ¼ J0 Rþ c1sð Þ J1 Rþ sð ÞY1 rwsð Þ � Y1 Rþ sð ÞJ1 rwsð Þ½ ��
� c2J1 Rþ c1sð Þ J0 Rþ sð ÞY1 rwsð Þ � Y0 Rþ sð ÞJ1 rwsð Þ½ �; ð4:16Þ

B2 ¼ Y0 Rþ c1sð Þ J1 Rþ sð ÞY1 rwsð Þ � Y1 Rþ sð ÞJ1 rwsð Þ½ ��
� c2Y1 Rþ c1sð Þ J0 Rþ sð ÞY1 rwsð Þ � Y0 Rþ sð ÞJ1 rwsð Þ½ �; ð4:17Þ

u ¼ a2t; c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
; c2 ¼ T1

T2

ffiffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
; Rþ¼ Rþ rw; ð4:18Þ

where R is the radius of the wellbore zone less the well radius (i.e., skin thickness),
m; rw is pumping well radius, m; J0 �ð Þ and J1 �ð Þ are Bessel functions of the first kind
of the zero and the first order; Y0 �ð Þ and Y1 �ð Þ are Bessel functions of the second
kind of the zero and the first order (see Appendix 7.13).

2. The drawdown in the wellbore zone:

sð2Þ ¼ Q
4p T2

4
p rw

Z1
0

1� exp �us2
� �	 
A1B1 þA2B2

B2
1 þB2

2

ds
s2
; ð4:19Þ

A1 ¼ Y0 Rþ c1sð Þ J1 Rþ sð ÞY0 rsð Þ � Y1 Rþ sð ÞJ0 rsð Þ½ ��
� c2Y1 Rþ c1sð Þ J0 Rþ sð ÞY0 rsð Þ � Y0 Rþ sð ÞJ0 rsð Þ½ �; ð4:20Þ

A2 ¼ J0 Rþ c1sð Þ Y1 Rþ sð ÞJ0 rsð Þ � J1 Rþ sð ÞY0 rsð Þ½ ��
� c2J1 Rþ c1sð Þ Y0 Rþ sð ÞJ0 rsð Þ � J0 Rþ sð ÞY0 rsð Þ½ �: ð4:21Þ
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4.3 Heterogeneous Aquifers with a Constant-Head
Boundary

4.3.1 Strip Aquifer

The basic assumptions and conditions (Fig. 4.3) are:

• general conditions for a horizontally heterogeneous aquifer with a linear inter-
face (see the beginning of Sect. 4.1);

• the main zone is a strip aquifer, which is limited by a constant-head boundary
from one side and by the interface between the two zones from the other side.

Basic Analytical Relationships

Steady-State Flow Equations (Bochever et al. 1979)

1. The drawdown in the main zone is:

sð1Þm ¼ Q
2p T1

ln
q
r
þ 1

2

X1
n¼1

T2 � T1
T2 þ T1

� �n
ln

2nLþ Lp þ Lw
� �2 þ y2

2nLþ Lp � Lw
� �2 þ y2

þ

þ ln
2nL� Lp � Lw
� �2 þ y2

2nL� Lp þ Lw
� �2 þ y2

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð4:22Þ

2. The drawdown in the adjacent zone is:

sð2Þm ¼ Q
p T1 þ T2ð Þ ln

q
r
þ 1

2

X1
n¼1

T2 � T1
T2 þ T1

� �n

ln
2nLþ Lp þ Lw
� �2 þ y2

2nLþ Lp � Lw
� �2 þ y2

( )
; ð4:23Þ

where sð1Þm ; sð2Þm are the drawdown values in the period of steady-state flow in
observation wells in the main and adjacent zones, respectively, m; L is the width of
the strip aquifer, m; Lp and Lw are the distances from the observation and pumping
wells to the constant-head boundary, m; q is the distance between the observation
and the image wells (Fig. 4.3b, c), which is determined in the same manner as in
aquifers semi-infinite in the horizontal plane, i.e., by formula (Eq. A3.1), m; for y,
see Eq. A3.2, m.
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4.3.2 Semi-circular Aquifer

The basic assumptions and conditions (Fig. 4.4) are:

• general conditions for a horizontally heterogeneous aquifer with a linear inter-
face (see the beginning of Sect. 4.1);

• in the horizontal plane, the main zone is limited by a linear constant-head
boundary and a circular interface between the two zones;

• the adjacent zone is limited in the horizontal plane by a linear constant-head
boundary and a circular interface between the two zones.

Basic Analytical Relationships

Steady-State Flow Equations (Bochever et al. 1979)

Fig. 4.3 Semi-infinite horizontally heterogeneous aquifer with two zones. a Cross-section; b, c a
planar view with an observation well in b the main and c adjacent zone
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1. The drawdown in the main zone is:

sð1Þm ¼ Q
2pT1

ln
q
r
þ 1

2
T1 � T2
T1 þ T2

� �
ln

L2wc � R2
� �

L2pc � R2
� �

þ q2R2

L2wc � R2
� �

L2pc � R2
� �

þ r2R2

8<
:

9=
;; ð4:24Þ

where R is the radius of the semicircle, m; Lwc is the distance from the pumping
well to the center, m; Lpc is the distance from the observation well to the center,
which is evaluated based on specified distances:

Lpc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � Lw � Lp1
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2wc � L2w

q� �2

þ L2p1

s
: ð4:25Þ

For the calculation of the distance to the image well (q), see Eq. A3.1.

2. The drawdown in the adjacent zone is:

sð2Þm ¼ Q
p T1 þ T2ð Þ ln

q
r
: ð4:26Þ

4.3.3 Wedge-Shaped Aquifer

The basic assumptions and conditions (Fig. 4.5) are:

• general conditions for a horizontally heterogeneous aquifer with a linear inter-
face (see the beginning of Sect. 4.1);

Fig. 4.4 Horizontally
heterogeneous aquifer with a
semicircle interface between
the two zones (a planar view).
The figure shows the image
well and the distance to it
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• the main zone is limited by two semi-infinite crossing boundaries (a
wedge-shaped aquifer), of which one is a constant-head boundary and the other
is the interface between the two zones;

• the adjacent zone is semi-limited in the horizontal plane by a linear impermeable
boundary and the interface between the two zones;

• an observation well, fully penetrating, is located in the main zone.

The drawdown is determined in the main zone.
As was the case with a wedge-shaped aquifer (see Sect. 1.1.4), the angle

between the two boundaries cannot be arbitrary. The list of angle sizes acceptable
for processing is the same as that for a pumping test in a wedge-shaped aquifer with
mixed boundary conditions (see Appendix 3).

With an increase in the hydraulic conductivity of the adjacent zone, the problem
setting transforms to a setting of a wedge-shaped aquifer with a constant-head
boundaries (see Sect. 1.1.4.1); while a decrease in the hydraulic conductivity results
in mixed boundary conditions (see Sect. 1.1.4.3).

The drawdown in the main zone in the steady-state flow period is described by
the following equation (Bochever et al. 1979):

sð1Þm ¼ Q
2pT1

ln
q4n�1

r
þ T2 � T1

T2 þ T1

� �n

ln
q2n�1

q2n
þ ln

Xn�1

j¼1

T2 � T1
T2 þ T1

� � j

ln
q2j�1q4n�2j�1

q2jq4n�2j

( )
;

ð4:27Þ

n ¼ p
2h

¼ 90
h
; ð4:28Þ

Fig. 4.5 Horizontally
heterogeneous aquifer with
two intersecting rectilinear
boundaries (planar view).
Image wells and the distances
to them are shown in the
figure

124 4 Horizontally Heterogeneous Aquifers

http://dx.doi.org/10.1007/978-3-319-43409-4_1
http://dx.doi.org/10.1007/978-3-319-43409-4_1
http://dx.doi.org/10.1007/978-3-319-43409-4_1


where h is the angle between the intersecting boundaries (Fig. 4.5), in degrees; qj
are the distances to the image wells, which are evaluated similarly to the scheme of
a wedge-shaped aquifer (see Eq. A3.6), m.

4.3.4 Circular Aquifer

Concentric planar zones with different hydraulic conductivity are considered
(Fig. 4.6). The outer zone has a circular constant-head boundary. The drawdown in
the steady-state flow period is determined in the pumping well located in the center
of the first zone.

The maximal drawdown in the pumping well (Pykhachov and Isayev 1973) is:

smw ¼ Q
2pm

1
k1

ln
R1

rw
þ
XN
i¼2

1
ki
ln

Ri

Ri�1

 !
; ð4:29Þ

Fig. 4.6 Horizontally heterogeneous aquifer limited by a circular constant-head boundary. The
section and plan for a, b two and c, d several circular zones

4.3 Heterogeneous Aquifers with a Constant-Head Boundary 125



where ki is the hydraulic conductivity of the i-th zone, m/d; N is the number of
circular zones; Ri is the radius of the i-th zone, m.

In the case of two circular zones, the solution (Eq. 4.29) becomes simpler
(Shchelkachev and Lapuk 1949):

smw ¼ Q
2pm

1
k1

ln
R1

rw
þ 1

k2
ln
R2

R1

� �
: ð4:30Þ
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Chapter 5
Pumping Test near a Stream

An isotropic aquifer is crossed by a river. The pumping and observation wells are
fully penetrating. The chapter considers analytical solutions for calculating the
drawdown depending on river geometry and hydrodynamic conditions: (1) the
stream is a boundary of the flow (Sect. 5.1) and (2) the stream is a boundary that
does not limit the cone depletion (Sect. 5.2). Steady-state solutions for pumping
from a well under the stream are considered separately (Sect. 5.3).

5.1 A Semipervious Stream

The basic assumptions and conditions (Figs. 5.1 and 5.3) are:

• the aquifer is semi-infinite, confined or unconfined;
• a Cauchy boundary condition is considered.

To solve the problem, the image-well method is used: a single image well is
introduced.

The drawdown is determined within the aquifer at any distance from the
pumping well to the river. A typical plot of the drawdown in the observation well is
given in Fig. 12.26.

Basic Analytical Relationships

Transient Flow Equations
1. The Shestakov solution (Zeegofer and Shestakov 1968) (Fig. 5.1) is:

s ¼ Q
4p T

W
r2

4at

� �
�W

q2L
4at

� �� �
; ð5:1Þ

qL ¼ q � fL DL
q

� �
; ð5:2Þ
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q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lp þ Lw þ 2DL
� �2 þ r2 � Lw � Lp

� �2q
; ð5:3Þ

where s is the drawdown in an observation well, m; Q is the discharge rate, m3/d;
t is the time elapsed from the start of pumping, d; T ¼ km is aquifer transmissivity,
m2/d; k; m are the hydraulic conductivity (m/d) and thickness (m); a ¼ T=S is
aquifer hydraulic diffusivity, m2/d; S is the aquifer storage coefficient, dimension-
less; r is the radial distance from the pumping to the observation well, m; Lw and Lp
are the distances from the pumping well and the observation well to the boundary,
m; DL here, is the retardation coefficient of the semipervious stream bed (Eq. 5.4),
m; q is the distance from the observation to the image well with the stream
bed resistance taken into account (Eq. 5.3), m; W �ð Þ is the well-function
(see Appendix 7.1); fL �ð Þ is a special function (Fig. 5.2, Table 5.1).

The retardation coefficient of the semipervious stream bed is calculated using the
theoretical relationship (Mironenko and Shestakov 1978):

DL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm0=k0

p
cotanh

nbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm0=k0

p
 !

; ð5:4Þ

Fig. 5.1 Schematic diagram of a pumping test near a stream. A scheme for the Shestakov
solution. a Cross-section; b planar view (the signs of actual and image discharge are given at the
wells)

Table 5.1 Table of fL and DL/q

DL/q 0.0 0.3 0.5 0.7 1.0 1.5 2.0 3.0

fL 1.00 1.01 1.03 1.05 1.10 1.18 1.27 1.44
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where m0 is the thickness of the semipervious layer of the stream bed, m; k0 the
hydraulic conductivity of the semipervious layer of the stream bed, m/d; b is river
width, m; n ¼ 0:5; 1, depending on river width.

Zeegofer and Shestakov (1968) tabulated the function fL depending on the ratio
of DL to q (Table 5.1).

Function fL is plotted in Fig. 5.2.
For b ¼ DL=q[ 2, we have an approximation (Zeegofer and Shestakov 1968):

fL bð Þ ¼ 0:96þ 0:16 b: ð5:5Þ

For b ¼ DL=q� 2, the following polynomial approximation can be used
(Sindalovskiy 2006):

fL bð Þ ¼ 1� 0:00259435 bþ 0:1424847 b2 � 0:04896219 b3 þ 0:0060177989 b4:

ð5:6Þ

According to Shestakov’s estimates (1973), Eq. 5.1 can be used in calculations
with acceptable accuracy (from 1 to 2 %), for time t�ð5 � DLÞ2=a.

The Shestakov solution (Eq. 5.1) yields the transmissivity (T) and storage
coefficient (S) of the aquifer and estimates the retardation coefficient of the
semipervious stream bed (DL), calculated by (Eq. 5.4).

2. The Hantush solution (Hantush 1965) (Fig. 5.3) is:

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2p k
W

r2

4at

� �
�W

q2

4at

� �
þ 2J� u; b1; b2ð Þ

� �s
; ð5:7Þ

Fig. 5.2 Dependence of fL on
the ratio DL/q

5.1 A Semipervious Stream 129



J� u; b1; b2ð Þ ¼ 2
Z1
1

exp �b1 s� 1ð Þ � u s2 þ b22
� �	 
 s

s2 þ b22
ds; ð5:8Þ

u ¼ Lw þ Lp
� �2

4at
; ð5:9Þ

b1 ¼
Lw þ Lp
DL

; ð5:10Þ

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � Lw � Lp

� �2q
Lw þ Lp

; ð5:11Þ

DL ¼ k
k0
m0; ð5:12Þ

where a ¼ km=Sy is the hydraulic diffusivity of the unconfined aquifer, m2/d; Sy is
the specific yield, dimensionless; m is the initial saturated thickness of unconfined
aquifer, m; DL is the retardation coefficient of the semipervious stream bed
(Eq. 5.12), m; k0; m0 is the hydraulic conductivity (m/d) and thickness (m) of the
semipervious stream bed; q is the distance between the observation and image wells
(Eq. A3.1), m; J� u; b1; b2ð Þ is a special function (see Appendix 7.7).

Fig. 5.3 Schematic diagram of a pumping test near a stream. Scheme to apply the Hantush
solution. a Cross-section; b planar view (the signs of the actual and image discharges are given at
the wells)
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Solution (Eq. 5.7) is given for a gravity-drainage period. At the limiting values
of hydraulic conductivity of the stream bed k0, Eq. 5.7 tends to the equation for a
constant-head or impermeable boundary (Table 5.2).

The Hantush solution (Eq. 5.7) is determined by the following hydraulic
parameters: hydraulic conductivity (k), specific yield (Sy), and the retardation
coefficient of the semipervious stream bed (DL), calculated by (Eq. 5.12).

Steady-State Flow Equation

sm ¼ Q
2pT

ln
qL
r
; ð5:13Þ

where sm is the drawdown in the observation well during steady-state period, m.
Equation 5.13, derived from Shestakov solution (Eq. 5.1), is applied to the

scheme given in Fig. 5.1.

Graphic-Analytical Processing
The relationship given in Table 5.3 has been derived from Eq. 5.13.

Table 5.2 Transformation of Eq. 5.7

k0 DL J� �ð Þ Equation 5.7

k0 ! 1 DL ! 0 J� u;1; b2ð Þ ¼ 0 Constant-head
boundarya

k0 ! 0 DL ! 1
J� u; 0;b2ð Þ ¼ W uþ ub22

� � ¼ W
q2

4at

� �
b Impermeable boundaryc

as ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2p k
W

r2

4at

� �
�W

q2

4at

� �� �s
—solution for a constant-head boundary

buþ ub22 ¼
Lw þ Lp
� �2

4at
þ Lw þ Lp
� �2

4at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � Lw � Lp

� �2q
Lw þ Lp

0
@

1
A

2

¼ r2 þ 4LwLp
4at

¼ q2

4at

cs ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2p k
W

r2

4at

� �
þW

q2

4at

� �� �s
—solution for an impermeable boundary

Table 5.3 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight linea
T ¼ Q

2p � A ln
qL
r

aThe plot is constructed by the drawdown values for a steady-state flow period, given the
retardation coefficient of the semipervious stream bed DL, which is evaluated by Eq. 5.4
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5.2 Partially Penetrating Stream of Finite Width

The basic assumptions and conditions (Figs. 5.4, 5.5, and 5.6) are:

• the aquifer is unconfined; the case of leakage from the underlying aquifer is
considered (Fig. 5.5);

• the boundary is partially penetrating river of a finite width.

The drawdown is determined within the aquifer at any distance from the
pumping well.

Basic Analytical Relationships

Transient Flow Equations
1. Nonleaky aquifer (Hunt 1999) (Fig. 5.4):

s ¼ Q
4p km

W
r2

4at

� �
�
Z1
0

e�sW
q20
4at

� �
ds

2
4

3
5; ð5:14Þ

q20 ¼ Lw þ Lp þ 2DL
m
b
s

� �2
þ y2; ð5:15Þ

Fig. 5.4 Schematic diagram of a pumping test in an aquifer near a partially penetrating stream of
finite width. a Cross-section; b planar view
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where b is river width, m; DL is retardation coefficient of the semipervious stream
bed (Eq. 5.12), m; Lw, Lp are the distances from the pumping and observation wells
to the middle of the river, respectively, m.

The value of y is calculated depending on the position of the observation well
with respect to the river: in front of the river (on the same side as the pumping well):

y2 ¼ r2 � Lw � Lp
� �2 ð5:16Þ

or over the river:

y2 ¼ r2 � Lw þ Lp
� �2

: ð5:17Þ

2. A leaky aquifer (Zlotnik and Tartakovsky 2008) (Fig. 5.5):

s ¼ Q
4p km

W
r2

4at
;
r
B

� �
�
Z1
0

e�sW
q20
4at

;
q0
B

� �
ds

2
4

3
5; ð5:18Þ

here:

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmm00=k00

p
; ð5:19Þ

k00; m00 are aquitard hydraulic conductivity (m/d) and thickness (m); W u; bð Þ is the
well-function for leaky aquifers (see Appendix 7.2).

With a correction of the drawdown (see Sect. 2.1), solutions (Eqs. 5.14 and
5.18) become:

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2p k
f

r
; ð5:20Þ

where f is the expression in square brackets in Eqs. 5.14 and 5.18.

Fig. 5.5 Schematic diagram of a pumping test in a leaky aquifer near a partially penetrating
stream of finite width: cross-section; for a planar view, see Fig. 5.4b
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Solutions (Eqs. 5.14 and 5.18) are given for a gravity-drainage period. As was
the case with Hantush solution (Eq. 5.7), the hydraulic parameters to be determined
in this case are the hydraulic conductivity (k), specific yield (Sy), and retardation
coefficient of the semipervious stream bed (DL), calculated by Eq. 5.12. In addition,
solution (Eq. 5.18) takes into account the leakage factor (B), which, in notations of
Fig. 5.5, corresponds to formula (Eq. 5.19).

Steady-State Flow Equations (Zlotnik and Tartakovsky 2008)
1. Nonleaky aquifer (Fig. 5.4):

sm ¼ Q
4p km

ln
Lw þ Lp
� �2 þ y2

r2
þ

þ 2
Z1

1þLp=Lw

s

s2 þ y=Lwð Þ2 exp �Lw
s� 1� Lp=Lw

2DL
b
m

� �
ds

2
666664

3
777775:

ð5:21Þ

2. Leaky aquifer (Fig. 5.5):

sm ¼ Q
2p km

K0
r
B

� �
�
Z1
0

e�sK0
q0
B

� �
ds

2
4

3
5; ð5:22Þ

where q0 see Eq. 5.15; B see Eq. 5.19; K0 �ð Þ is modified Bessel function of the
second kind of the zero order (see Appendix 7.13).

3. The drawdown in observation wells in the period of steady-state flow is
determined in three zones (Fig. 5.6): (1) in front of the river—the zone of location
of the pumping well, (2) over the river, and (3) under the riverbed. All zones have
the same values of hydraulic conductivity. The thickness of the third zone is
generally less than the thickness of the first two. Riverbed hydraulic conductivity
differs from that of the aquifer.

The maximal drawdown in each of the three zones is calculated by the following
equations (Bochever and Gylybov 1966; Bochever et al. 1968):

sð1Þm ¼ Q
2p km

ln
q
r
þ f1 þ f2

� �
; ð5:23Þ

sð2Þm ¼ Q
2p km

f2 � f1ð Þ; ð5:24Þ

sð3Þm ¼ Q
2p km

1
sinh b=Bð Þ sinh

b� Lp3
B

f1 þ f2ð Þþ sinh
Lp3
B

f2 � f1ð Þ
� �

: ð5:25Þ
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To solve Eqs. 5.23–5.25, Tables 5.4 and 5.5 are to be used along with the
relationships:

Fr c1; c2ð Þ ¼
Z1
0

exp �sc1ð Þ
1þ s

cos sc2ð Þds; ð5:26Þ

b1 ¼ 1þ 1
cosh b=Bð Þ ; b2 ¼ 1� 1

cosh b=Bð Þ ; ð5:27Þ

Fig. 5.6 Pumping near a stream. Scheme for determining drawdown in three zones.
a Cross-section; b, c a planar view for wells b located along a straight line perpendicular to the
river and c arbitrarily distributed. The numbers show the zones in which the drawdown is evaluated

Table 5.4 The values of functions f1 and f2 for different well locations

Wells are located along a straight line (Fig. 5.6b) Arbitrary location of wells (Fig. 5.6c)

f1 ¼ exp aib1ð ÞW aib1ð Þ f1 ¼ Fr aib1;a yb1ð Þ
f2 ¼ exp aib2ð ÞW aib2ð Þ f2 ¼ Fr aib2;a yb2ð Þ

Table 5.5 Formulas for calculating ai and yi for three zones

Zone 1 Zone 2 Zone 3

ai a1 ¼ a Lw þ Lp1
� �

a2 ¼ a Lw þ Lp2 � b
� �

a3 ¼ aLw

yi y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � Lw � Lp1

� �2q
y2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � Lw þ Lp2

� �2q
y3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r23 � Lw þ Lp3

� �2q
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a ¼ m3DL
mB2 ; ð5:28Þ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km3m0=k0

p
; ð5:29Þ

where B is leakage factor: formula (Eq. 5.29), m; Fr c1; c2ð Þ is a special function; a
is a combined characteristic of the river-channel penetration and low-permeability
of the river bed: formula (Eq. 5.28), 1/m; m3 is aquifer thickness under the river, m;
Lw is the distance from the pumping well to the boundary, m; Lpi; yi (i = 1, 2, 3) are
the distances from the observation wells to the boundary and projections of the
distances from the observation wells to the pumping well onto the boundary line
(see Table 5.5 and Fig. 5.6), m; ai—see Table 5.5; q is the distance from the
observation well, located in the first zone, to the image well (m), which is deter-
mined in the same manner as for the semi-infinite aquifers, and, in the denotations
of this problem is:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4LwLp1

q
; ð5:30Þ

DL is the retardation coefficient of the semipervious stream bed (m), which is
calculated similar to Eq. 5.4, and in the denotations of this problem so:

DL ¼ B cotanh b=Bð Þ: ð5:31Þ

When all wells are located on a straight line (Fig. 5.6b), we have yi ¼ 0, and the
distances between the wells can be expressed in terms of the distances to the river:
r1 ¼ Lw � Lp1, r2 ¼ Lw þ Lp2, r3 ¼ Lw þ Lp3.

5.3 Pumping from a Well under a Stream

The pumping well is located under river bed (Fig. 5.7). The drawdown during the
steady-state flow period depends on whether there is a semipervious stream bed.

Basic Analytical Relationships

Steady-State Flow Equations
1. Pumping from a partially penetrating well (Fig. 5.7a), directly interacting

aquifer and river. The drawdown in the pumping well (Babushkin 1954) is:

smw ¼ Q
2p klw

ln
0:75lw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� LTw þ 0:25lw

p

rw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� LTw � 0:25lw

p � 1
2
ln

LTw þ 0:25lwð Þ mþ 0:25lwð Þ
LTw � 0:25lwð Þ m� 0:25lwð Þ

� �
;

ð5:32Þ

136 5 Pumping Test near a Stream



where smw is the drawdown in the pumping well during a steady-state period, m;
LTw is the vertical distance from the river bed to the center of pumping well screen,
m; lw is screen length, m; rw pumping well radius, m.

2. Pumping from a fully penetrating well (Fig. 5.7b) in the presence of a
low-permeability bed. The drawdown in the pumping well (Bindeman 1951) is:

smw ¼ Q
2p km

ln
1:12
rw

ffiffiffiffiffiffiffiffiffiffiffi
kmm0

k0

r !
: ð5:33Þ
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Chapter 6
Fractured-Porous Reservoir

This chapter considers solutions for pumping tests in different types of fractured–
porous media (Moench solutions) and in aquifers where the pumping well crosses a
single vertical or horizontal fracture (fissure) of a finite size.

6.1 Moench Solutions

Pumping tests in fractured–porous media can be described by Moench solutions
(Moench 1984). Such solutions are available for: (1) slab-shaped blocks (Fig. 6.1a),
(2) sphere-shaped blocks (Fig. 6.1b), and (3) an orthogonal fracture system,
Warren–Root model (Warren and Root 1963) (Fig. 6.1c).

A typical drawdown plot in a fractured-porous medium is given in Fig. 12.27.

Basic Analytical Relationships
The basic flow equations are too complicated for practical application, because they
depend on many parameters and require special software. Graphic-analytical pro-
cessing methods are not given here; however, simplified relationships can be used
in some cases (see Eqs. 6.7–6.9).

Transient Flow Equations

1. The drawdown in a fracture (s) and a block (s0) for a layered system of
fractures and blocks (Fig. 6.1a, d) and for spherical blocks (Fig. 6.1b) is:

s ¼ Q
4p km

f t; r; rw; rc; k; k
0; Ss; S0s;mb; kskin;mskin; k

f
skin;m

f
skin

� �
; ð6:1Þ

s0 ¼ Q
4p km

f t; r; rw; rc; k; k
0; Ss; S0s;mb; zp; kskin;mskin; k

f
skin;m

f
skin

� �
; ð6:2Þ

where Q is the discharge rate, m3/d; m is aquifer thickness, m; r is the radial
distance from the pumping to the observation well, m; rw; rc are the radiuses of the
pumping well and its casing, m; t is the time elapsed from the start of pumping, d.
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2. The drawdown in an aquifer with an orthogonal fracture system (Fig. 6.1c) is:

s ¼ Q
4p km

f t; r; rw; rc; k; k
0; Ss; S0s;mb; kskin;mskin

� �
: ð6:3Þ

The algorithm of the program DP_LAQ (see Appendix 5.5) is used to process
the functional relationships (Eqs. 6.1–6.3).

Given below are parameter denotations for the solutions under consideration:
kskin; mskin are the hydraulic conductivity (m/d) and the thickness (m) of wellbore
skin, respectively (see Appendix 2); k f

skin; m
f
skin are the hydraulic conductivity (m/d)

and the thickness (m) of fracture skin, respectively (Fig. 6.1d); k ¼ kf Vf =V is the
hydraulic conductivity of the fissure system, m/d; k0 ¼ kbVb=V is the hydraulic
conductivity of the block system, m/d; kf is the hydraulic conductivity of an average
fissure, m/d; kb is the hydraulic conductivity of an average block, m/d; mb is the
average thickness or diameter of blocks, m; mf is the average aperture of a fissure,
m; Ss ¼ Ssf Vf =V is the specific storage of the fracture system, 1/m; S0s ¼ SsbVb=V is
the specific storage of the block system, 1/m; Ssf is the specific storage of an
average fissure, 1/m; Ssb is the specific storage of an average block, 1/m; Vf is the

Fig. 6.1 Schematic diagrams of fracture–porous media. a Slab-shaped blocks; b sphere-shaped
blocks; c an orthogonal fracture system (Warren–Root model); d a scheme of a fracture and a
block with a fracture skin
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volume of fissures, m3; Vb is the volume of blocks, m3; V is the bulk volume, m3; zp
is the distance to block center, i.e., the point where level variations in the block are
measured (see Fig. 6.1a, b), m.

Moench solutions are used to evaluate the hydraulic conductivity and the
specific storage of fractured (k; Ss) and block (k0; S0s) systems. The solutions can
take into account the wellbore storage and the skin effect, which is derived from the
hydraulic conductivity and thickness of the wellbore skin kskin; mskin; for solutions
(Eqs. 6.1 and 6.2), in addition, the hydraulic conductivity and the thickness of
fracture skin (k f

skin; m
f
skin) are also determined. For all solutions, the block size (mb)

is to be specified: the block thickness for a layered fracture system, the radius for
spherical blocks, and the edge length of a cubic block for an orthogonal system.

The wellbore storage of a fully penetrating pumping well in a fractured-porous
medium is calculated as (Moench 1984):

WD ¼ r2c
2r2wSsm

: ð6:4Þ

The effect of wellbore skin can be written by analogy with Eq. A2.2 as:

Wskin ¼ kmskin

rwkskin
: ð6:5Þ

The estimation of dimensionless parameters (Eqs. 6.4 and 6.5) involves the
hydraulic parameters of the fractured system (see comments above).

The skin effect of the fracture (Fig. 6.1d) is accounted for by the following
dimensionless parameter (dimensionless fracture skin) (Moench 1984):

W f
skin ¼

k0mf
skin

k f
skinmb=2

: ð6:6Þ

3. Simplified solutions. De Smedt (2011) gives some approximations that can be
applied at some limiting values of block storage.

3.1. In the case of no storage in the blocks S0 ! 0 or no fluid exchange between
fissures and blocks, C ! 0:

s ¼ Q
4p km

W
r2S
4kmt

� �
; ð6:7Þ

where C ¼ a k0m is the leakage coefficient between fissures and blocks, 1/d; a is a
geometric parameter (see the description of the program DP_LAQ in
Appendix 5.5), 1/m2; W uð Þ is the well-function (see Appendix 7.1).
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3.2. The response of block storage is instantaneous C ! 1:

s ¼ Q
4p km

W
r2 Sþ S0ð Þ
4kmt

� �
: ð6:8Þ

3.3. The storage of blocks is infinite S0 ! 1:

s ¼ Q
4p km

W
r2S
4kmt

; r

ffiffiffiffiffiffi
C
km

r !
; ð6:9Þ

where W u; bð Þ is the well-function for leaky aquifers (see Appendix 7.2).

6.2 Pumping Well Intersecting a Single Vertical Fracture

The basic assumptions and conditions (Fig. 6.2) are:

• the aquifer is confined and isotropic, with infinite lateral extent;
• the fracture is of limited length and a height equal to the aquifer thickness;
• the pumping well is fully penetrating, located in the center of the fracture;
• the observation well is fully penetrating;
• the flow to the well is pseudoradial (Fig. 6.3a) or linear (Fig. 6.3b);
• fracture storage is ignored.

The drawdown is determined at any distance from the pumping well.

Fig. 6.2 Schematic diagram of a well in a vertical fracture of limited length. a Cross-section;
b three-dimensional representation; c planar view
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Basic Analytical Relationships

Transient Flow Equations

1. Pseudo-radial flow toward a fracture (Fig. 6.3a) (Gringarten at el. 1974) is:

s ¼ Q
8
ffiffiffi
p

p
T

Zu
0

exp
�L2p=L

2
f

s

 !
erf

1� b

2
ffiffiffi
s

p þ erf
1þ b

2
ffiffiffi
s

p
� �

dsffiffiffi
s

p ; ð6:10Þ

u ¼ 4Tt
L2f S

; ð6:11Þ

b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � L2p

q
Lf

; ð6:12Þ

where T; S is the transmissivity (m2/d) and the storage coefficient (dimensionless)
of the aquifer; Lf is fracture length, m; Lp is the horizontal distance from the
observation well to the fracture (Fig. 6.2c), m; erfð�Þ is error function (see
Appendix 7.12).

2. Linear (parallel) flow to a fracture (Fig. 6.3b) (Jenkins and Prentice 1982) is:

s ¼ Q
2Lf T

ffiffiffiffiffiffiffi
4Tt
p S

r
exp � L2pS

4Tt

" #
þ Lp erf

ffiffiffiffiffiffiffi
L2pS

4Tt

s
� 1

2
4

3
5

8<
:

9=
;: ð6:13Þ

The relationship for linear flow (Eq. 6.10) is recommended for use in the case of
pumping from a well located in a fracture of great length or for initial moments in
time.

Solutions (Eqs. 6.10 and 6.13) are used to determine the transmissivity (T) and
the storage coefficient (S) of a confined aquifer with known fracture length (Lf ).

Fig. 6.3 Schemes (planar view) of a a pseudo-radial and b linear flow toward a vertical fracture
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6.3 Pumping Well Intersecting a Single Horizontal
Fracture

The basic assumptions and conditions (Fig. 6.4) are:

• the aquifer is confined and anisotropic in the vertical plane, of infinite lateral
extent;

• the fracture is of limited radius and parallel to aquifer bottom;
• the pumping well is fully penetrating, located in the center of the circular

fracture;
• the average aperture of the fracture can be taken into account.

The drawdown is determined at any point in the aquifer.

Basic Analytical Relationships

Transient Flow Equations (Gringarten and Ramey 1974)

1. The drawdown in a piezometer with the average aperture of the fracture taken
into account is:

s ¼ Q
2p krm

Zu
0

(
exp � r2=L2f

s

 !"Z1
0

I0
r=Lf
s

s0
� �

exp � s02

4s

� �
s0ds0

#
�

�
"
1þ 4m

pmf

X1
n¼1

1
n
exp �s

npLf
2m

ffiffiffiffiffiffiffiffiffiffi
kr=kz

p
 !2

2
4 #

�

� sin
npmf

2m
cos

np m� zf
� �
m

cos
np m� LTp
� �

m

#)
ds
s
; ð6:14Þ

Fig. 6.4 A well in a horizontal fracture. a Cross-section; b three-dimensional representation
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where kr; kz are the horizontal and vertical hydraulic conductivities, m/d; LTp is the
vertical distance from the aquifer top to the open part of the piezometer, m; Lf is
fracture diameter, m; mf is the average aperture of the fracture, m; zf is the vertical
distance from the top of the aquifer to the fracture (Fig. 6.4), m; I0 �ð Þ is modified
Bessel function of the first kind of the zero order (see Appendix 7.13).

2. The drawdown in the piezometer with fracture thickness not taken into
account is:

s ¼ Q
2p krm

Zu
0

exp � r2=L2f
s

 ! Z1
0

I0
r=Lf
s

s0
� �

exp � s02

4s

� �
s0ds0

2
4

3
5�

8<
:

� 1þ 2
X1
n¼1

exp �s
npLf

2m
ffiffiffiffiffiffiffiffiffiffi
kr=kz

p
 !2

2
4

3
5 cos

np m� zf
� �
m

cos
np m� LTp
� �

m

2
4

3
5
9=
; ds

s
:

ð6:15Þ

In the solutions (6.14) and (6.15),

u ¼ 4krt
SsL2f

: ð6:16Þ

Solutions (Eqs. 6.11 and 6.12) are used to determine the horizontal and vertical
hydraulic conductivities (kr; kz) and the specific storage (Ss) of a confined aquifer.
The parameters to be specified also include fracture diameter, the vertical distance
to the fracture, and, if the average aperture of the fracture is to be taken into
account, mf .
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Part II
Analytical Solutions for

a Complex Pumping-Test Setting
and Well-System Configurations

This part, which is a continuation of the first part, considers analytical relationships
to describe water-level changes in aquifers under different scenarios of aquifer
testing.

The second part considers: tests with pumping from a horizontal or inclined well,
constant-head tests, slug tests, multi-well constant-discharge tests, variable dis-
charge tests, simultaneous pumping from adjacent aquifers, and dipole flow tests.
Detailed description is provided for functions of water-level recovery.

Also treated are rules for constructing analytical solutions with the use of the
superposition principle. This principle is widely used in calculating the drawdown
during multi-well tests, tests with variable discharge rate, and recovery tests. The
superposition principle is extended to tests in bounded aquifers.

Graphical methods are proposed for most aquifer tests, including recovery tests
and multi-well pumping tests.



Chapter 7
Horizontal or Slanted Pumping Wells

This chapter considers several basic solutions for calculating the drawdown in
observation wells and piezometers during constant-discharge pumping tests from
horizontal and slanted wells in a confined aquifer (Sect. 7.1), an unconfined aquifer
(Sect. 7.2), or a leaky aquifer (Sect. 7.3). All solutions are given for aquifers of
infinite lateral extent with vertical anisotropy taken into account.

7.1 Confined Aquifer

The basic assumptions and conditions (Fig. 7.1) are:

• the aquifer is confined and vertically anisotropic;
• the pumping well is horizontal, parallel to the aquifer bottom.

The drawdown is determined in a piezometer located at any point within the
aquifer.

Fig. 7.1 Horizontal pumping well in a confined aquifer. a Cross-section; b planar view
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Basic Analytical Relationships

Transient Flow Equation (Zhan et al. 2001):

s ¼ Q
4lw

ffiffiffiffiffiffiffiffiffiffiffi
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u ¼ kz
Sm

t; ð7:2Þ

where s is the drawdown in a piezometer, m; Q is the discharge rate, m3/d; v ¼ffiffiffiffiffiffiffiffiffiffi
kz=kr

p
is the coefficient of vertical anisotropy; kr; kz are the horizontal and vertical

hydraulic conductivities, m/d; m is aquifer thickness, m; S is the storage coefficient,
dimensionless; Lp is the distance in the plan from the observation well to the line on
which the pumping well is located (Fig. 7.1b), m; LTw; LTp are the vertical dis-
tances from the aquifer top to the horizontal screen of the pumping well, and the
open part of the piezometer (Fig. 7.1a), respectively, m; lw is the length of pumping
well screen, m; r is the horizontal distance from the center of the screen to the
piezometer, m; t is the time elapsed from the start of pumping, d; erf �ð Þ is error
function (see Appendix 7.12).

Equation 7.1 is used to evaluate the horizontal (kr) and vertical (kz) hydraulic
conductivities and the storage coefficient (S) of a confined aquifer.

7.2 Unconfined Aquifer

The basic assumptions and conditions (Fig. 7.2) are:

• the aquifer is unconfined and vertically and horizontally anisotropic;
• the pumping well is horizontal or slanted.

The drawdown is determined at any point within the aquifer in an observation
well or a piezometer.

Basic Analytical Relationships

Transient Flow Equation (Zhan and Zlotnik 2002)
The drawdown in a piezometer or a fully/partially penetrating observation

well is:
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s ¼ Q

2pm
ffiffiffiffiffiffiffiffiffiffiffiffi
kxkykz3

p f t; r; Lp; lp; lw; h; LTw; LTp; kx; ky; kz; S; Sy
� �

; ð7:3Þ

where kx ¼ kr; ky; kz are the hydraulic conductivities of the aquifer along the
abscissa, ordinate, and applicate, respectively, m/d; Sy is the specific yield,
dimensionless; LTp is the vertical distance from the initial water table to the open
part of the piezometer or the center of observation well screen, m; LTw is the vertical
distance from the initial water table to the screen center of the horizontal or slanted
pumping well (Fig. 7.2), m; lp is the length of observation well screen, m; h is the
angle between the bottom and the well (Fig. 7.2c, d), in degrees.

In the calculation of drawdown in the piezometer, the length of the
observation-well screen (lp) is excluded from the function (Eq. 7.3). For a horizontal
pumping well, the angle (h) is zero. In a fully-penetrating observation well, the screen
length is equal to the initial water-saturated thickness of the unconfined aquifer.

Equation 7.3 estimates the hydraulic conductivities along three directions
(kx; ky; kz), the storage coefficient (S), and the specific yield (Sy) of the unconfined
aquifer. Solution (Eq. 7.3) can take into account the effect of the delayed drainage,
the calculation of which involves the reciprocal of Boulton’s delay index (a) (see
Eqs. 2.15 and 2.16). In the case of slanted pumping well, the drawdown in the
aquifer depends not only on the distance to the pumping well, but also on the

Fig. 7.2 a, b Horizontal and c, d slanted pumping wells in an unconfined aquifer. The drawdown
is monitored in (a, c) a piezometer or (b, d) an observation well. A planar view is given in
Fig. 7.1b
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position of the observation well relative to the screen center of the pumping well (to
the right or to the left).

The relationship (Eq. 7.3) is treated by the algorithm of WHI program (see
Appendix 5.6).

7.3 Leaky Aquifer

The basic assumptions and conditions (Fig. 7.3) are:

• a leaky aquifer system consists of two aquifers (the main and an adjacent),
separated by an aquitard; the bottom boundary is impermeable, the top boundary
is either impermeable or constant-head (the leaky aquifer is located under a
water reservoir);

• the pumping well is horizontal, located in the main aquifer;
• the level in the adjacent aquifer does not change during the pumping test;
• aquitard storage is ignored.

The drawdown is determined in a piezometer located at any point within the
main aquifer.

Basic Analytical Relationships

Transient Flow Equation (Zhan and Park 2003)

s ¼ Q
4lw

ffiffiffiffiffiffiffiffiffiffiffi
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cos b

m� LTw
m

� �
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BBB@
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2
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>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

dsffiffiffi
s

p ;

ð7:4Þ

Fig. 7.3 Horizontal pumping well in a leaky aquifer. a Leaky confined aquifer; b a leaky aquifer
underlying a water reservoir
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B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kzmm0=k0

p
; ð7:5Þ

where i ¼ 1, b ¼ np; B is the leakage factor, m; k0; m0 are the hydraulic conduc-
tivity (m/d) and thickness (m) of the aquitard; for u see Eq. 7.2.

For a leaky aquifer underlying a water reservoir (Fig. 7.3b), i ¼ 0,
b ¼ npþ p=2.

Equation 7.4 is used to determine the horizontal (kr) and vertical (kz) hydraulic
conductivities and the storage coefficient (S) of the main aquifer, as well as the
leakage factor (B).
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Chapter 8
Constant-Head Tests

This chapter provides analytical solutions describing the drawdown in isotropic
confined nonleaky and leaky aquifers during a constant-head pumping test. The
aquifer is of a constant thickness. The pumping and observation wells are fully
penetrating. Three configurations of flow domains are considered: an aquifer of
infinite lateral extent (Sect. 8.1), a circular aquifer (Sect. 8.2), and a radially
heterogeneous aquifer (Sect. 8.3).

For this type of testing, the drawdown in the observation well depends only on
the aquifer hydraulic diffusivity and, in the case of leakage, on the leakage factor.

With the drawdown in the pumping well kept constant, the well discharge will
be decreasing over time. The changes in the discharge under such conditions will
depend on aquifer transmissivity, hydraulic diffusivity (or storage coefficient), and,
in the case of leakage, on the leakage factor.

The analytical relationships given in this chapter can be used to calculate the
drawdown in an observation well, located at any distance from the pumping well,
and the pumping well discharge.

8.1 Aquifers of Infinite Lateral Extent

The basic assumptions and conditions (Fig. 8.1) are:

• the aquifer is of infinite lateral extent, either nonleaky or leaky;
• the drawdown in the pumping well is kept constant during the test;
• wellbore storage is taken into account.

Typical plots of drawdown in an observation well and discharge in the pumping
well in a confined aquifer and a leaky aquifer system are depicted in Fig. 12.28.
For the effect of hydraulic characteristics on the drawdown and discharge, see
Fig. 12.29.
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Basic Analytical Relationships

Transient Flow Equations

1. Nonleaky aquifer (Fig. 8.1a)
1.1a. The solution for drawdown in an observation well (Jaeger 1956; Hantush

1964) is:

s ¼ swA
at
r2w

;
r
rw

� �
; ð8:1Þ

A u; bð Þ ¼ 1� 2
p

Z1
0

J0 sð ÞY0 sbð Þ � Y0 sð ÞJ0 sbð Þ
J20 sð ÞþY2

0 sð Þ
exp �us2ð Þ

s
ds; ð8:2Þ

where s is the drawdown in the observation well, m; sw is the constant drawdown in
the pumping well, m; a ¼ T=S is the hydraulic diffusivity, m2/d; T ¼ km is the
transmissivity, m2/d; k; m are the hydraulic conductivity (m/d) and thickness (m) of
the aquifer; r is the radial distance from the pumping to the observation well, m; t is
the time elapsed from the start of pumping, d; rw is well radius, m; A u; bð Þ is the
flowing well function for nonleaky aquifers (see Appendix 7.11); J0 �ð Þ and Y0 �ð Þ
are Bessel functions of the first kind and the second kind of the zero order (see
Appendix 7.13).

1.1b. A solution for pumping well discharge (Jacob and Lohman 1952) is:

Q ¼ 2pTswG
at
r2w

� �
; ð8:3Þ

G uð Þ ¼ 4u
p

Z1
0

s exp �us2
� � p

2
þ arctan

Y0 sð Þ
J0 sð Þ

� �
ds; ð8:4Þ

Fig. 8.1 Constant-head test. a Confined aquifer; b leaky aquifer system: any combination of
aquifers and aquitards shown in Fig. 3.2 can be considered
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where Q is the discharge rate (varying over time), m3/d; G uð Þ is the flowing well
discharge function for nonleaky aquifers (see Appendix 7.11).

1.2a. An alternative form of solution for the drawdown (Sternberg 1969) is:

s � swK0 r

ffiffiffiffiffiffiffi
1
2at

r !,
K0 rw

ffiffiffiffiffiffiffi
1
2at

r !
: ð8:5Þ

1.2b. An alternative form of solution for the discharge rate (Sternberg 1969) is:

Q � 2pTswrw

ffiffiffiffiffiffiffi
1
2at

r
K1 rw

ffiffiffiffiffiffiffi
1
2at

r !,
K0 rw

ffiffiffiffiffiffiffi
1
2at

r !
; ð8:6Þ

where K0 �ð Þ and K1 �ð Þ are modified Bessel functions of the second kind of the zero
and the first order, respectively (see Appendix 7.13).

Equations 8.5 and 8.6 have been derived from Eqs. 8.15 and 8.17 for a leaky
aquifer at B ! 1.

Another simplified solution is given in Mishra and Guyonnet (1992) for the
drawdown in an observation well:

s � swW
r2

4at

� �	
W

r2w
4at

� �
ð8:7Þ

with an approximation for t[ 5r2=a:

s � swln 2:25at=r2
� �


ln 2:25at = r2w
� �

; ð8:8Þ

and for the discharge of the pumping well:

Q � 4pTswexp
r2w
4at

� �	
W

r2w
4at

� �
ð8:9Þ

with an approximation for t[ 5r2w=a:

Q � 4pTsw


ln 2:25at = r2w
� �

; ð8:10Þ

where W �ð Þ is the well-function (see Appendix 7.1).
2. Leaky aquifer (Fig. 8.1b)
2.1a. A solution for the drawdown in an observation well (Hantush 1959,

1964) is:

s ¼ swZ
at
r2w

;
r
rw

;
rw
B

� �
; ð8:11Þ
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Z u; b1; b2ð Þ ¼ K0 b1b2ð Þ
K0 b2ð Þ þ exp �ub22

� � 2
p

Z1
0

J0 sb1ð ÞY0 sð Þ � Y0 sb1ð ÞJ0 sð Þ
J20 sð ÞþY2

0 sð Þ
exp �us2ð Þ
s2 þ b22

sds;

ð8:12Þ

where B is the leakage factor (m), which is determined depending on the number of
adjacent aquifers (see Appendix 1); Z u; b1; b2ð Þ is flowing well function for leaky
aquifers (see Appendix 7.11).

2.1b. A solution for the pumping-well discharge (Hantush 1959) is:

Q ¼ 2pTswG
at
r2w

;
rw
B

� �
; ð8:13Þ

G u; bð Þ ¼ bK1 bð Þ
K0 bð Þ þ 4

p2
exp �ub2
� � Z1

0

1
J20 sð ÞþY2

0 sð Þ
s exp �us2ð Þ

s2 þ b2
ds; ð8:14Þ

where G u; bð Þ is the flowing well discharge function for leaky aquifers (see
Appendix 7.11).

2.2a. An alternative form of solution for the drawdown (Sternberg 1969) is:

s � swK0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2at

þ 1
B2

r !,
K0 rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2at

þ 1
B2

r !
ð8:15Þ

or, for tentative calculations, by analogy with (Eq. 8.7):

s � swW
r2

4at
;
r
B

� �	
W

r2w
4at

;
rw
B

� �
; ð8:16Þ

where W u; bð Þ is the well-function for leaky aquifers (see Appendix 7.2).
2.2b. An alternative form of solution for the discharge rate (Sternberg 1969) is:

Q � 2pTswrw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2at

þ 1
B2

r
K1 rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2at

þ 1
B2

r !,
K0 rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2at

þ 1
B2

r !
: ð8:17Þ

Equations 8.5–8.10 and 8.15–8.17 are approximate.

Steady-State Flow Equations
Steady-state estimates in a leaky aquifer can be based on the following solutions
(Hantush 1959):
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• for maximal drawdown in an observation well:

sm � sw
K0 r=Bð Þ
K0 rw=Bð Þ ; ð8:18Þ

• for minimal discharge in the pumping well:

Q � 2pTsw
rw
B

� �K1 rw=Bð Þ
K0 rw=Bð Þ : ð8:19Þ

Graphic-Analytical Processing
The relationships given in Table 8.1 have been derived from Eqs. 8.10 and 8.19.

8.2 Circular Aquifers

The basic assumptions and conditions (Fig. 8.2) are:

• general conditions for constant-head tests in nonleaky and leaky aquifers of
infinite lateral extent (see the beginning of Sect. 8.1);

• a circular boundary along the external contour of the aquifer;
• the pumping well is located in the center of the circular aquifer.

The boundary condition on the external contour of the aquifer specifies either
(1) a constant-head or (2) a impermeable boundary (see Fig. A3.10a, c).

Basic Analytical Relationships

Transient Flow Equations (Hantush 1959)
1. Nonleaky aquifer
1.1. Constant-head boundary on the outer contour
A solution for the drawdown in an observation well is:

Table 8.1 Graphic-analytical parameter evaluation

Plot Method Relationship
sw
Q
—lg t Straight line

T ¼ 0:183
C

, lg a ¼ A
C

þ lg
r2w
2:25

or a ¼ r2w
2:25tx

, S ¼ 2:25Ttx
r2w

Q—lg t Horizontal
straight
linea

T � A
2pTsw

B
rw

� �
K0 rw=Bð Þ
K1 rw=Bð Þ

A is straight line intercept on the ordinate (see Sects. 12.1.1 and 12.1.2); C is straight line slope
(see Sect. 12.1.1); tx is the intercept of the straight line on the abscissa
aThe parameters are evaluated based on discharge rates in the period of steady-state flow, given the
leakage factor B
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and for discharge rate:

Q ¼ 2pTsw
1

ln R=rwð Þ þ 2
X1
n¼1

J20 1n
R
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� �
exp �12n

at
r2w

� �

J20 1nð Þ � J20 1n
R
rw

� �
8>><
>>:

9>>=
>>;; ð8:21Þ

where R is the radius of the circular aquifer, m; 1n are positive roots of equation
J0 1nð ÞY0 1nR=rwð Þ � J0 1nR=rwð ÞY0 1nð Þ ¼ 0 (see Appendix 7.15).

1.2. The aquifer contour is an impermeable boundary
A solution for the drawdown in an observation well is:

Fig. 8.2 Circular aquifer: constant-head test. a, b Cross-sections for a nonleaky aquifer and
b leaky aquifer; c a planer view. R is the radius of the circle
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s ¼ sw 1þ p
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and for the discharge rate:

Q ¼ 4pTsw
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J21 nn
R
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exp �n2n

at
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J20 nnð Þ � J21 nn
R
rw
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where J1 �ð Þ, Y1 uð Þ are Bessel functions of the first kind and the second kind of the
first order (see Appendix 7.13); nn are positive roots of the equation
J0 nnð ÞY1 nnR=rwð Þ � J1 nnR=rwð ÞY0 nnð Þ ¼ 0 (see Appendix 7.15).

The solutions (Eqs. 8.20–8.23) have been derived from solutions (Eqs. 8.24–
8.27) at B ! 1.

2. Leaky aquifer
2.1. The external contour of the aquifer is a constant-head boundary
A solution for the drawdown in an observation well is:
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and for the discharge rate:
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where I0 �ð Þ and I1 �ð Þ are modified Bessel functions of the first kind of the zero and
the first order.

2.2. The aquifer contour is an impermeable boundary
A solution for the drawdown in an observation well:
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and for the discharge rate:
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Steady-State Flow Equations (Hantush 1959)
1. Nonleaky aquifer. The external contour of the aquifer is a constant-head

boundary. The maximal drawdown in the observation well is:
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sm ¼ swln
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ð8:28Þ

and the minimal discharge rate is:

Q ¼ 2pTsw
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: ð8:29Þ

2. Leaky aquifer
2.1. The external contour of the aquifer is a constant-head boundary
The maximal drawdown in the observation well is:
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and the minimal discharge rate is:
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2.2. The aquifer contour is an impermeable boundary
The maximal drawdown in the observation well is:
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� �

K0
rw
B

� �
þK1

R
B

� �
I0

rw
B

� �	
I1

R
B

� � ð8:32Þ

and the minimal discharge rate is:

Q ¼ 2pTsw
rw
B

K1
rw
B

� �
� K1

R
B

� �
I1

rw
B

� �	
I1

R
B

� �

K0
rw
B

� �
þK1

R
B

� �
I0

rw
B

� �	
I1

R
B

� � : ð8:33Þ

The solution for a nonleaky aquifer (Eq. 8.28) was derived from the solution for
a leaky aquifer (Eq. 8.30) at B ! 1. Steady-state solutions for the discharge rates
(Eqs. 8.29, 8.31, and 8.33) follow from the appropriate transient Eqs. 8.21, 8.25,
and 8.27 when extended by approximation to longer time periods (Hantush 1959).
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Fig. 8.3 Radially heterogeneous aquifer: constant-head test. a Cross-section; b planar view

8.3 Radial Patchy Aquifer

The basic assumptions and conditions (Fig. 8.3) are:

• general conditions for constant-head test in a nonleaky aquifer of infinite lateral
extent (see the beginning of Sect. 8.1);

• in the planar view, the aquifer consists of two zones of heterogeneity with a
common circular boundary;

• the pumping well is located in the center of a circular zone (wellbore zone),
surrounded by the main zone;

• the observation well is located in the main or wellbore zone.

This configuration can be regarded as a homogeneous confined aquifer with a
pumping well surrounded by an area that plays a role of wellbore skin. In this
formulation, analytical solutions enable the estimation of the thickness and the
hydraulic conductivity of the skin, as well as its storage coefficient.

Basic Analytical Relationships

Transient Flow Equations (Yang and Yeh 2006)
1. Solution for the drawdown in the main zone is:

sð1Þ ¼ sw 1� 4
p2Rþ

Z1
0

exp �us2
� � J0 rc1sð ÞB1 þY0 rc1sð ÞB2

B2
1 þB2

2

ds
s2

0
@

1
A; ð8:34Þ

u ¼ a2t; c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
; c2 ¼ T1

T2

ffiffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
; Rþ ¼ Rþ rw; ð8:35Þ

B1 ¼ c2Y1 Rþ c1sð Þ J0 Rþ sð ÞY0 rwsð Þ � Y0 Rþ sð ÞJ0 rwsð Þ½ ��
�Y0 Rþ c1sð Þ J1 Rþ sð ÞY0 rwsð Þ � Y1 Rþ sð ÞJ0 rwsð Þ½ �


 �
; ð8:36Þ

164 8 Constant-Head Tests



B2 ¼ c2J1 Rþ c1sð Þ Y0 Rþ sð ÞJ0 rwsð Þ � J0 Rþ sð ÞY0 rwsð Þ½ ��
�J0 Rþ c1sð Þ Y1 Rþ sð ÞJ0 rwsð Þ � J1 Rþ sð ÞY0 rwsð Þ½ �


 �
: ð8:37Þ

2. Solution for the drawdown in the wellbore zone is:

sð2Þ ¼ sw 1þ 2
p

Z1
0

exp �us2
� �A1B2 � A2B1

B2
1 þB2

2

ds
s

0
@

1
A; ð8:38Þ

A1 ¼ c2Y1 Rþ c1sð Þ J0 Rþ sð ÞY0 rsð Þ � Y0 Rþ sð ÞJ0 rsð Þ½ ��
�Y0 Rþ c1sð Þ J1 Rþ sð ÞY0 rsð Þ � Y1 Rþ sð ÞJ0 rsð Þ½ �


 �
; ð8:39Þ

A2 ¼ c2J1 Rþ c1sð Þ Y0 Rþ sð ÞJ0 rsð Þ � J0 Rþ sð ÞY0 rsð Þ½ ��
�J0 Rþ c1sð Þ Y1 Rþ sð ÞJ0 rsð Þ � J1 Rþ sð ÞY0 rsð Þ½ �


 �
; ð8:40Þ

where s 1ð Þ; s 2ð Þ are the drawdown values in observation wells located in the main
and wellbore zones, m; T1 ¼ k1m and T2 ¼ k2m are the transmissivities of the main
and wellbore zones, respectively, m2/d; k1; k2 are the hydraulic conductivities of
the main and wellbore zones, m/day; m is aquifer thickness, m; a1 ¼ T1=S1 and
a2 ¼ T2=S2 are the hydraulic diffusivities of the main and wellbore zones,
respectively, m2/d; R is the radius of the wellbore zone less the well radius (i.e., skin
thickness), m; rw is the pumping-well radius, m.

The transient solutions (Eqs. 8.34 and 8.38) are used to evaluate the transmis-
sivities and hydraulic diffusivities (or storage coefficients) of the two zones.
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Chapter 9
Slug Tests

This type of aquifer testing consists of an instantaneous injection or withdrawal of a
known volume of water into or from the tested well, followed by monitoring the
water-level recovery in the same well until its original value is attained. Basic
analytical relationships for slug tests are given for different experimental conditions.
All such relationships take into account the wellbore storage.

9.1 Cooper and Picking Solutions

The basic assumptions and conditions (Fig. 9.1) are:

• a confined and isotropic aquifer with infinite lateral extent;
• a fully penetrating tested well.

Examples of recovery curves in the tested and observation wells during a slug
test are shown in Fig. 12.30. For the effect of hydraulic parameters on the recovery
regime, see Fig. 12.31.

Basic Analytical Relationships

Transient Flow Equations
1. The principal solution for slug tests is associated with a Cooper solution for a

tested well as a response to instantaneous change in the water-level in the same well
(Carslow and Jaeger 1959; Cooper et al. 1967):

sw ¼ s0Fs
Tt
r2c
;
r2w
r2c

S

� �
; ð9:1Þ

Fs u; bð Þ ¼ 8b
p2

Z1
0

exp �us2=bð Þ
s J0 sð Þ � 2b J1 sð Þ½ �2 þ sY0 sð Þ � 2bY1 sð Þ½ �2

ds
s
; ð9:2Þ
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where s0 is the initial (instantaneous) water-level change in the tested well, m; sw is
water-level recovery in the tested well, m; T ¼ km is the transmissivity, m2/d; k; m
are the hydraulic conductivity (m/d) and the thickness (m) of the aquifer; S is the
storage coefficient, dimensionless; rw; rc are the radiuses of the tested well and its
casing, respectively, m; t is the time elapsed from the start of slug test, d; Fs u; bð Þ is
a slug test function (see Appendix 7.10); J0 �ð Þ and J1 �ð Þ are Bessel functions of the
first kind of the zero and the first order; Y0 �ð Þ and Y1 �ð Þ are Bessel functions of the
second kind of the zero and the first order (see Appendix 7.13).

2. A Cooper solution for an observation well (Carslow and Jaeger 1959; Cooper
et al. 1967) is:

s ¼ s0Fsp
Tt
r2c
;
r2w
r2c

S;
r
rw

� �
; ð9:3Þ

Fsp u; b1; b2ð Þ ¼ 2
p

Z1
0

exp �us2=b1
� ��

� J0 s b2ð Þ sY0 sð Þ � 2b1Y1 sð Þ½ � � Y0 s b2ð Þ s J0 sð Þ � 2b1J1 sð Þ½ �
s J0 sð Þ � 2b1J1 sð Þ½ �2 þ sY0 sð Þ � 2b1Y1 sð Þ½ �2 ds;

ð9:4Þ

where s is water-level change in the observation well, m; r is the radial distance
from the tested to the observation well, m; Fsp u; b1; b2ð Þ is a special function for
water-level change in an observation well during a slug test.

3. Picking solution (Picking 1994) treats a noninstantaneous change in the initial
level (before level recovery, water was being withdrawn from or injected into the
well with a constant discharge within time t0):

Fig. 9.1 Slug test in a confined isotropic aquifer. a Instantaneous water injection into the well;
b instantaneous water withdrawal from the well
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sw ¼ s0

F
r2wS

4T t0 þ trð Þ ;
r2w
r2c

S

� �
� F

r2wS
4Ttr

;
r2w
r2c

S

� �

F
r2wS
4Tt0

;
r2w
r2c

S

� � ; ð9:5Þ

where F u; bð Þ is a function for large-diameter wells (see Appendix 7.9); s0, here, is
the water-level change in the tested well at the moment when water withdrawal
(injection) was stopped, m; t0 is the duration of water withdrawal (injection), d; tr is
the time since the beginning of level recovery, d.

Equation 9.5 can be conveniently used when data on level recovery after a
short-time constant-discharge withdrawal are available.

Cooper and Picking solutions (Eqs. 9.1, 9.3, and 9.5) are used to evaluate
aquifer transmissivity (T) and storage coefficient (S). Cooper solutions enable the
parameters to be evaluated by the water-level change in both the tested well
(Eq. 9.1) and the observation well (Eq. 9.3).

9.2 Slug Tests in Tight Formations

The performance of slug tests in tight formations can be complicated by the
unacceptable duration of the experiment and the lack of data on the initial head
distribution. Bredehoeft and Papadopulos (1980) proposed an alternative procedure,
i.e., the pressure pulse method, for carrying out slug tests in tight formations and
processing their results.

The essence of the procedure is as follows. A shut-in well is filled with water up
to a certain level. As the rocks are tight, the water level will remain nearly constant
after that. This implies that knowledge of the initial groundwater level is not
required. The newly reached level is taken as the initial head distribution. Next, the
pressure in the well is to be abruptly raised through injection of some volume of
water, which is equivalent to the value s0 for an ordinary slug test (Fig. 9.2b). After

Fig. 9.2 Scheme for the slug-test procedure in tight formations: a cross-section and b a schematic
plot of water-level change in a well during the test
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that, the procedure described above is followed, and data on level recovery are
recorded.

In the case of an unconsolidated formation, the test interval is taken to be the
length of the well screen, while for consolidated formations, this is the distance
between packers (Fig. 9.2a). Data processing is based on a Cooper solution
(Eq. 9.1). The difference is that the values of the arguments of function Fs u; bð Þ are
somewhat different: the actual casing radius is replaced by an effective radius:

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VwCwqwg=p

p
; ð9:6Þ

where Vw is the volume of water injected into the well, m3; Cw is water com-
pressibility, Pa−1; qw is water density, kg/m3; g is gravity acceleration, m/s2.

Under normal conditions, the effective radius calculated by (Eq. 9.6) is less than
1 mm. The volume of injected water can be calculated as:

Vw ¼ p r2wlw þ p r2t lt; ð9:7Þ

where rt is the radius of the pipe used for water injection from the pump, lw is the
length of tested well screen, m; lt is pipe length from the top packer to the
manometer.

With this taken into account, the solution (Eq. 9.1) becomes:

sw ¼ s0Fs
pTt

VwCwqwg
;

p r2w
VwCwqwg

S

� �
: ð9:8Þ

First changes in the head during the standard slug test in tight formations will
take place tens or even hundreds of days after the perturbation, and reaching a
steady-state may require several decades (Bredehoeft and Papadopulos 1980), while
the major portion of recovery in the proposed method will take place within a few
hours.

This method is recommended for use in rocks with a permeability below 1
milidarsy (�1 � 10−15 m2), which, under normal conditions, is equivalent to a
hydraulic conductivity of 0.001 m/d.

9.3 Solutions for Slug Tests with Skin Effect

In addition to the conditions described in Sect. 9.1, the hydraulic characteristics of
the wellbore zone are taken into account in this case. Its effect can be regarded as
wellbore skin (Fig. 9.3). The water-level change is monitored in the tested well and
the observation wells, located in the aquifer and wellbore zone.
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Basic Analytical Relationships

Transient Flow Equations (Yeh and Yang 2006)

1. A solution for the water-level change in the tested well is:

sw ¼ s0
2g rw
p

Z1
0

exp �us2
� �A1B1 þA2B2

B2
1 þB2

2
ds; ð9:9Þ

u ¼ kskinm
Sskin

t; a ¼ S
rw
rc

� �2

; f ¼ k
kskin

; g ¼ S
Sskin

; ð9:10Þ

c1 ¼
ffiffiffiffiffiffiffiffi
g=f

p
; c2 ¼

ffiffiffiffiffiffi
gf

p
; Rþ ¼ mskin þ rw; ð9:11Þ

A1 ¼ Y0 Rþ c1sð Þ Y1 Rþ sð ÞJ0 rwsð Þ � J1 Rþ sð ÞY0 rwsð Þ½ ��
� c2Y1 Rþ c1sð Þ Y0 Rþ sð ÞJ0 rwsð Þ � J0 Rþ sð ÞY0 rwsð Þ½ �; ð9:12Þ

A2 ¼ J0 Rþ c1sð Þ J1 Rþ sð ÞY0 rwsð Þ � Y1 Rþ sð ÞJ0 rwsð Þ½ ��
� c2J1 Rþ c1sð Þ J0 Rþ sð ÞY0 rwsð Þ � Y0 Rþ sð ÞJ0 rwsð Þ½ �; ð9:13Þ

B1 ¼ A2g rwu� 2a
J0 Rþ c1sð Þ J1 Rþ sð ÞY1 rwsð Þ � Y1 Rþ sð ÞJ1 rwsð Þ½ ��
�c2J1 Rþ c1sð Þ J0 Rþ sð ÞY1 rwsð Þ � Y0 Rþ sð ÞJ1 rwsð Þ½ �

� �
;

ð9:14Þ

B2 ¼ �A1g rwu� 2a
Y0 Rþ c1sð Þ J1 Rþ sð ÞY1 rwsð Þ � Y1 Rþ sð ÞJ1 rwsð Þ½ ��
�c2Y1 Rþ c1sð Þ J0 Rþ sð ÞY1 rwsð Þ � Y0 Rþ sð ÞJ1 rwsð Þ½ �

� �
;

ð9:15Þ

Fig. 9.3 Slug test with
wellbore skin. sskin is
water-level change in
the wellbore skin
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where kskin; Sskin; mskin are the hydraulic conductivity (m/d), storage coefficient
(dimensionless), and thickness (m) of the wellbore skin.

2. A solution for the water-level change in an observation well located in the
aquifer is:

s ¼ s0
4g rw
p2rs

Z1
0

exp �us2
� � J0 rc1sð ÞB2 � Y0 rc1sð ÞB1

B2
1 þB2

2

ds
s
: ð9:16Þ

3. A solution for the water-level change in an observation well located in the
wellbore zone (in the skin) is:

sskin ¼ s0
2g rw
p

Z1
0

exp �us2
� �Askin

1 B1 þAskin
2 B2

B2
1 þB2

2
ds; ð9:17Þ

Askin
1 ¼ Y0 Rþ c1sð Þ Y1 Rþ sð ÞJ0 rsð Þ � J1 Rþ sð ÞY0 rsð Þ½ ��

� c2Y1 Rþ c1sð Þ Y0 Rþ sð ÞJ0 rsð Þ � J0 rssð ÞY0 rsð Þ½ �; ð9:18Þ

Askin
2 ¼ J0 Rþ c1sð Þ J1 Rþ sð ÞY0 rsð Þ � Y1 Rþ sð ÞJ0 rsð Þ½ ��

� c2J1 Rþ c1sð Þ J0 Rþ sð ÞY0 rsð Þ � Y0 Rþ sð ÞJ0 rsð Þ½ �; ð9:19Þ

where sskin is water-level change in the wellbore skin, m.
The measured water-level change in the tested well (Eq. 9.9) or in an obser-

vation well, located in the aquifer (Eq. 9.16) or wellbore zone (Eq. 9.17), are used
to evaluate the hydraulic conductivities (k; kskin), and the storage coefficients
(S; Sskin) of the aquifer and wellbore zone.

9.4 Bouwer–Rice Solution

This section gives a solution for treating slug tests carried out in a partially pene-
trating well. The Bouwer–Rice solution uses a straight-line method to evaluate the
hydraulic conductivity (k) of an aquifer.

The basic assumptions and conditions (Fig. 9.4) are:

• an unconfined and isotropic aquifer of infinite lateral extent;
• a partially penetrating tested well.

172 9 Slug Tests



Transient flow equation (Bouwer and Rice 1976):

ln
s0

sw
¼ 2klw

r2c ln R=rwð Þ t; ð9:20Þ

where the radius of influence R for a partially penetrating well is evaluated as:

ln
R
rw

¼ 1:1
ln z=rwð Þ þ

rw
lw

A1 þA2 ln
m� z
rw

	 
� ��1

: ð9:21Þ

In Eq. 9.21, the allowable upper limit of the expression ln m� zð Þ=rw½ � is six.
Therefore, in the case of testing aquifers with greater thickness, the expression
ln m� zð Þ=rw½ � is replaced by 6. This equation also cannot be used when m ¼ z, i.e.,
when the partially penetrating well reaches the aquifer bottom. In the case of a fully
penetrating well or when m ¼ z, the radius of influence is calculated as:

ln
R
rw

¼ 1:1
ln z=rwð Þ þ

rw
lw

A3

� ��1

: ð9:22Þ

Here, z is the distance from the water table to the bottom of well screen, m;
A1; A2; A3 are dimensionless parameters, depending on the screen length and the
radius of the tested well; these parameters are to be obtained empirically (Fig. 9.5)
(Bouwer and Rice 1976).

Fig. 9.4 Scheme for
Bouwer–Rice solution. Slug
test in an isotropic unconfined
aquifer with a partially
penetrating tested well
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For practical calculations, dimensionless parameters can be evaluated with the
use of the following approximation (Sindalovskiy 2006):

• for the range 1� b� 200 (b ¼ lw=rw):

A1 ¼ 1:4773306þ 0:02741954bþ 8:0340006 � 10�5b2 � 2:5045234 � 10�7b3�
�1:2204508 � 10�8b4 þ 9:7196356 � 10�11b5 � 2:1463808 � 10�13b6

	 

;

A2 ¼ 0:166753þ 0:004970107bþ 5:4654427 � 10�5b2 � 1:278645 � 10�6b3 þ
þ 1:1887909 � 10�8b4 � 5:1785833 � 10�11b5 þ 8:6501211 � 10�14b6

	 

;

A3 ¼ 0:3905696þ 0:08310949b� 0:001515863b2 þ 2:1736242 � 10�5b3�
�1:653479 � 10�7b4 þ 6:3107187 � 10�10b5 � 9:4937404 � 10�13b6

	 

;

• for the range 200\b\2000:

A1 ¼ 2:510366þ 0:0260556b� 5:08597807 � 10�5b2 þ 5:8230884 � 10�8b3�
�3:7929349 � 10�11b4 þ 1:2935074 � 10�14b5 � 1:7859607 � 10�18b6

	 

;

A2 ¼ �0:0651429þ 0:006547392b� 4:1237584 � 10�6b2 � 2:1340524 � 10�9b3 þ
þ 4:5603083 � 10�12b4 � 2:3529733 � 10�15b5 þ 4:0923695 � 10�19b6

	 

;

A3 ¼ 0:2593157þ 0:04869992b� 9:4552972 � 10�5b2 þ 1:05714921 � 10�7b3�
�6:7058679 � 10�11b4 þ 2:2286538 � 10�14b5 � 3:004312102 � 10�18b6

	 

:

Graphic-Analytical Processing

The relationship given in Table 9.1 has been derived from Eq. 9.20.

Fig. 9.5 Plot for determining
dimensionless empirical
coefficients in Eqs. 9.21
and 9.22
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9.5 Hvorslev Solutions

This section gives solutions for processing slug tests in wells with different designs.
Hvorslev solutions allow the straight-line method to be used to evaluate the hori-
zontal hydraulic conductivity (kr) and the coefficient of vertical anisotropy (v) of
the aquifer.

The basic assumptions and conditions (Fig. 9.6) are:

• the aquifer is confined or unconfined and vertically anisotropic and has infinite
lateral extent;

• the tested well is partially penetrating.

Table 9.1 Graphic-analytical parameter evaluation

Plot Method Relationship

lg
s0

sw
—t

Straight line
k ¼ 2:3

r2c
2lw

C ln
R
rw

C is the slope of the straight line (see Sect. 13.1.1)
The straight line is to pass through the origin of coordinates; when the plot contains two linear
segments, the treatment is to be based on the second one, because the first accounts for a disturbed
zone around the well or suggests leakage; the plot may also contain a third segment (not straight),
which corresponds to the final stage of the test and shows small increments of the water level

Fig. 9.6 Layout of the tested well in an aquifer for processing slug-test data by the Hvorslev
method. a Partially penetrating well in a confined aquifer; b a well in an aquiclude reaching a
confined aquifer at its bottom; c, d unconfined aquifer: c partially penetrating well and
d piezometer
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Graphic-Analytical Processing

Table 9.2 gives Hvorslev solutions (Hvorslev 1951) for evaluating the horizontal
hydraulic conductivity for each of the four typical models (Fig. 9.6). The evaluation
is made by straight-line method on the plot lg s0=swð Þ—t.

The straight line is to pass through the origin of coordinates. The vertical
hydraulic conductivity is evaluated given the vertical-anisotropy coefficient.

9.6 Van der Kamp Solution

In highly permeable aquifers, water-level oscillations may appear during slug tests.
The solutions for this type of effects is based on the concept of attenuating

sinusoidal motion (Van der Kamp 1976):

sw ¼ s0 exp �bktð Þ cos tb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k2Þ

q� �
; ð9:23Þ

b ¼
ffiffiffiffi
g
L0

r
; k ¼ � r2c

8T
b ln 0:79r2w

S
T
b

� �
; kj j � 1; ð9:24Þ

where L0 is an effective length of water column (m): L0 ¼ Lc þ r2c=r
2
w
m
2

(Kipp

1985); in the case of close values of the radiuses of the screen and casing: L0 ¼
Lc þ 0:375lf (Cooper et al. 1965), lf is the well-screen length (in this case, equal to

Table 9.2 Graphic-analytical parameter evaluation

Scheme Relationship

Partially penetrating well in a confined aquifer
with a screen reaching the aquifer top
(Fig. 9.6a)

kr ¼ 2:3r2c
2lw

C ln
lw
v rw

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lw

v rw

� �2
s0

@
1
A

for
lw
v rw

[ 4 – kr ¼ 2:3r2c
2lw

C ln
2lw
v rw

Well in an aquiclude reaching a confined
aquifer at its bottom (Fig. 9.6b) kr ¼ 2:3p r2c

4v rw
C

Partially penetrating well in an unconfined
aquifer (Fig. 9.6c) kr ¼ 2:3r2c

2lw
C ln

lw
v 2rw

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lw

v 2rw

� �2
s0

@
1
A

for
lw
v rw

[ 8 – kr ¼ 2:3r2c
2lw

C ln
lw
v rw

Piezometer in an unconfined aquifer
(Fig. 9.6d) kr ¼ 2:3p 2r2c

11v rw
C

v ¼ ffiffiffiffiffiffiffiffiffiffi
kz=kr

p
is the dimensionless coefficient of vertical anisotropy; kr ; kz are hydraulic

conductivities in the horizontal and vertical directions, respectively, m/d

176 9 Slug Tests



aquifer thickness), m; Lc is the initial height of water column in the casing
(Fig. 9.7a), m.

Equation 9.23 is used to evaluate aquifer storage coefficient (S) and transmis-
sivity (T).
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Chapter 10
Multi-well Pumping Tests

The analytical solutions given in the first chapters (see Chaps. 1–6) described
pumping tests, involving a single pumping well with a constant discharge rate. This
chapter gives basic relationships for calculating the drawdown in aquifers at
(1) multi-well pumping tests with constant or variable discharge rates (Sects. 10.1
and 10.2) (2) simultaneous pumping from two adjacent aquifers (Sect. 10.3), and
(3) dipole flow tests (Sect. 10.4).

The solutions for the first two sections are provided by graphic-analytical
procedures for processing input data.

10.1 Pumping with a Constant Discharge Rate

This section focuses on analytical solutions for calculating the drawdown during
pumping tests involving several wells with constant discharge rates. The discharge
rates of the wells may differ in both their magnitudes and signs. All solutions
considered here are based on the superposition principle, which determines the
drawdown in an observation well as the sum of drawdown values induced by each
pumping well separately.

The general equation for the drawdown for a system of pumping wells in the case
of a confined aquifer of infinite lateral extent (see Sect. 1.1.1) can be written as:

s ¼ 1
4pT

Q1W
r21
4at

� �
þQ2W

r22
4at

� �
þ � � � þQNW

r2N
4at

� �� �
; ð10:1Þ

where s is the drawdown in an observation well, m; T is the transmissivity, m2/d; t is
the time elapsed from the start of pumping, d; a is the hydraulic diffusivity, m2/d; N is
the number of pumping wells; Q1;Q2; . . .;QN are the constant discharge rates in the
1st, 2nd,…, Nth pumping wells, respectively, m3/d; r1; r2; . . .; rN are the distances
from the observationwell inwhich the drawdown is determined to the 1st, 2nd,…,Nth
pumping wells, respectively, m; Wð�Þ is well-function (see Appendix 7.1).
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The equation for any other aquifer types (see Chaps. 1–6) can be written sim-
ilarly to formula (Eq. 10.1) with the well-function Wð�Þ replaced by another basic
drawdown function. In the case of a flow limited by some boundaries, the formula
(Eq. 10.1) is supplemented with terms (with signs corresponding to the boundary
condition) that account for image wells. In such case, the number N increases by the
number of image wells.

Figure 10.1 shows examples with the layout of three pumping wells and one
observation well in an aquifer of infinite (Fig. 10.1a) and semi-infinite (Fig. 10.1b)
lateral extent.

10.1.1 Fully Penetrating Well in a Confined Aquifer

Graphic-analytical methods for processing multi-well, constant-discharge tests are
best developed for confined aquifers. The procedure for constructing a solution
takes into account the effect of the planar boundaries of the groundwater flow. For
the analytical relationships in a single-well, constant-discharge pumping test under
such conditions, see Sect. 1.1.

10.1.1.1 Aquifer of Infinite Lateral Extent

The solutions given in this section are arranged depending on the synchronicity of
the start of the pumping-well operation.

Fig. 10.1 Example of layout of three pumping wells for a multi-well constant-discharge test in an
aquifer with a infinite and b semi-infinite lateral extent. The signs of the discharge rates of the
image wells are minus for a constant-head boundary and plus for an impermeable boundary
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Simultaneous Start of Pumping Wells

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4p T

XN
i¼1

QiW
r2i
4at

� �
; ð10:2Þ

where Qi is the constant discharge rate of the ith pumping well, m3/d; ri is the
distance from the observation well in which the drawdown is determined to the ith
pumping well (Fig. 10.1), m.

Quasi-Steady-State Flow Equation

s ¼ Qt

4p T
ln
2:25at
r02

; ð10:3Þ

ln r0 ¼ 1
Qt

XN
i¼1

Qi ln ri; ð10:4Þ

Qt ¼
XN
i¼1

Qi: ð10:5Þ

Graphic-Analytical Processing

The relationships given in Table 10.1 have been derived from Eqs. 10.2 and 10.3.

Table 10.1 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Straight line
T ¼ 0:183Qt

C
; lg a ¼ A

C
þ lg

r02

2:25
lg s—lg t

Type curve: lgW0 uð Þ—lg
1
u T ¼ 1

4p10D
; a ¼ r2110

E

4
s—lg r0 Straight line

T ¼ 0:366Qt

C
; lg a ¼ 2

A
C
� lgð2:25 � tÞ

s—lg
t
r02

The same
T ¼ 0:183Qt

C
; lg a ¼ A

C
� lgð2:25Þ

s1 � s2ð Þ—lg t Horizontal straight line
T ¼ Qt

2p � A ln
r02
r01

A is the intercept of the straight line on the ordinate (see Sects. 12.1.1 and 12.1.2); C is the slope of
the straight line (see Sect. 12.1.1); D, E are the shifts of the plots of the factual and type curves
(see Sect. 12.1.3) in the vertical (D) and horizontal (E) directions. s1; s2; r01; r

0
2 are the drawdown

(s) and reduced distances from the pumping well (r0) to the first and second observation wells. r0 is

calculated by (10.4). W0 uð Þ ¼
XN

i¼1
QiW ur0i

� �
; r0i ¼ ri=r1ð Þ2. The value of r0i can be normalized

to the distance to any pumping well (the distance to this well is also used when determining the
hydraulic diffusivity by a type curve)
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Asynchronous Start of Pumping Wells

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4pT

XNt

i¼1

QiW
r2i

4a t � tið Þ
� �

; ð10:6Þ

here, Nt is the number of pumping wells in operation at moment t; ti is the starting
moment of the operation of the ith pumping well, measured from the start of the
pumping test, d.

Quasi-Steady-State Flow Equation

s ¼ Qt

4pT
ln
2:25at0A

r02
; ð10:7Þ

ln t0A ¼ 1
Qt

XNt

i¼1

Qi ln t � tið Þ; ð10:8Þ

ln r0 ¼ 1
Qt

XNt

i¼1

Qi ln ri; ð10:9Þ

where Qt is determined by (Eq. 10.5) with N replaced by Nt.

Graphic-Analytical Processing

The relationships in Table 10.2 have been derived from Eq. 10.7.

Table 10.2 Graphic-analytical parameter evaluation

Plot Method Relationship
s
Qt
—lg t0A

Straight linea
T ¼ 0:183

C
; lg a ¼ A

C
þ lg

r02

2:25
s
Qt
—lg r0 Straight line

T ¼ 0:366
C

; lg a ¼ 2
A
C
� lgð2:25 � t0AÞ

s
Qt
—lg

t0A
r02

Straight lineb
T ¼ 0:183

C
; lg a ¼ A

C
� lgð2:25Þ

aThe number of linear segments corresponds to the number of activations of pumping wells
bAll measured values fall onto a single linear segment
r0 is determined by Eq. 10.9
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10.1.1.2 Aquifer Semi-infinite in the Horizontal Plane: Constant-Head
Boundary

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4p T

XN
i¼1

Qi W
r2i
4at

� �
�W

q2i
4at

� �� �
; ð10:10Þ

here, qi is the distance from the observation well in which the drawdown is mea-
sured to an image well (see Eq. A3.1) obtained as a mirror reflection of the ith
pumping well (Fig. 10.1b), m.

Steady-State Flow Equation

sm ¼ 1
2pT

ln r0; ð10:11Þ

ln r0 ¼
XN
i¼1

Qi ln
qi
ri
; ð10:12Þ

where sm is the drawdown in the observation well during the steady-state flow
period, m.

Graphic-Analytical Processing

The relationships given in Table 10.3 have been derived from Eqs. 10.10
and 10.11.

Table 10.3 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight line
T ¼ 1

2p � A ln r0

lg s—lg t
Type curve: lgW0 uð Þ—lg

1
u T ¼ 1

4p10D
; a ¼ r2110

E

4
s—lg r0 Straight line

T ¼ 0:366
C

s1 � s2ð Þ—lg t Horizontal straight line
T ¼ 1

2p � A ln
r01
r02

W0 uð Þ ¼
XN

i¼1
Qi W ur0i

� ��W uq0i
� �� 	

; r0i ¼ ri=r1ð Þ2; q0i ¼ qi=r1ð Þ2. The values of r0i and q0i can
be normalized to the distance to any pumping well (see note to Table 10.1). r0 is determined by
formula (Eq. 10.12)
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10.1.1.3 Aquifer Semi-infinite in the Horizontal Plane: Impermeable
Boundary

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4pT

XN
i¼1

Qi W
r2i
4at

� �
þW

q2i
4at

� �� �
: ð10:13Þ

Quasi-Steady-State Flow Equation

s ¼ Qt

2p T
ln
2:25at
r0

; ð10:14Þ

ln r0 ¼ 1
Qt

XN
i¼1

Qi ln ri � qi: ð10:15Þ

Graphic-Analytical Processing

The relationships given in Table 10.4 have been derived from Eqs. 10.13 and
10.14.

Table 10.4 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Straight line
T ¼ 0:366Qt

C
; lg a ¼ A

C
þ lg

r0

2:25
lg s—lg t

Type curve: lgW0 uð Þ—lg
1
u T ¼ 1

4p10D
; a ¼ r2110

E

4
s—lg r0 Straight line

T ¼ 0:366Qt

C
; lg a ¼ A

C
� lgð2:25 � tÞ

s—lg
t
r0

The same
T ¼ 0:366Qt

C
; lg a ¼ A

C
� lgð2:25Þ

s1 � s2ð Þ—lg t Horizontal straight line
T ¼ 1

2p � A ln
r01
r02

W0 uð Þ ¼
XN

i¼1
Qi W ur0i

� �þW uq0i
� �� 	

; see note to Table 10.3. r0 is determined by formula
(Eq. 10.15)
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10.1.1.4 Strip Aquifer: Constant-Head Boundaries

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4pT

XN
i¼1

Qi W
r2i
4at

� �
þ
Xn
j¼1

�1ð Þ j
X2
I¼1

W
q j
i;I


 �2
4at

0
B@

1
CA

2
64

3
75; ð10:16Þ

where n ! 1 is the number of reflections at a single boundary; q j
i;I is the distance

from the observation well in which the drawdown is measured to the jth image well,
reflected from the left (I = 1) or right (I = 2) boundary and obtained by reflection of
the ith pumping well, m.

The solution (Eq. 10.16) was derived from Eq. 1.17. Similarly, relationships can
be derived from Eqs. 1.18 and 1.19.

Steady-State Flow Equations

1. A solution based on the superposition principle is:

sm ¼ 1
2pT

ln r0 ¼ 0:366
T

lg r0; ð10:17Þ

lg r0 ¼
XN
i¼1

Qi lg
1

riqni;1

Qn
j¼1;3;5;... q

j
i;1q

j
i;2Qn

j¼2;4;6;... q
j
i;1q

j
i;2

 !
¼
XN
i¼1

Qi lg
q1i;1q

1
i;2

riqni;1

Yn�1

j¼2

qjþ 1
i;1 qjþ 1

i;2

q j
i;1q

j
i;2

 !
:

ð10:18Þ

2. Green’s function solution is:

sm ¼ 1
4p T

ln r0 ¼ 0:183
T

lg r0; ð10:19Þ

ln r0 ¼
XN
i¼1

Qi ln
cosh

p yi
L

� cos
p Lp þ Lw;i
� �

L

cosh
p yi
L

� cos
p Lp � Lw;i
� �

L

; ð10:20Þ

yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i � Lw;i � Lp

� �2q
; ð10:21Þ

where L is the width of the strip aquifer, m; Lw;i is the distance from the left
boundary to the ith pumping well, m; Lp is the distance from the observation well to
the left boundary, m.
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Graphic-Analytical Processing

The relationships given in Table 10.5 have been derived from Eqs. 10.16, 10.17,
and 10.19.

10.1.1.5 Strip Aquifer: Impermeable Boundaries

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4pT

XN
i¼1

Qi W
r2i
4at

� �
þ
Xn
j¼1

X2
I¼1

W
q j
i;I


 �2
4at

0
B@

1
CA

2
64

3
75: ð10:22Þ

The solution (Eq. 10.22) was derived from Eq. 1.24. Similarly, relationships can
be derived from Eqs. 1.25 and 1.26.

Graphic-Analytical Processing

The relationships given in Table 10.6 have been derived from Eq. 10.22.

Table 10.5 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight line
T ¼ 1

2p � A ln r0a, T ¼ 1
4p � A ln r0b

lg s—lg t
Type curve: lgW0 uð Þ—lg

1
u T ¼ 1

4p 10D
; a ¼ r2110

E

4
sm—lg r0 Straight line

T ¼ 0:366
C

a, T ¼ 0:183
C

b

s1 � s2ð Þ—lg t Horizontal straight line
T ¼ 1

2p � A ln
r01
r02

a, T ¼ 1
4p � A ln

r01
r02

b

aWith the use of superposition principle
bBased on Green’s function

W0 uð Þ ¼
XN

i¼1
Qi W ur0i

� �þ Xn

j¼1
�1ð Þ j

X2

I¼1
W ur0ji; I

 �h i

, r0i ¼
ri
r1

� �2

, r0ji; I ¼
q j
i;I

r1

 !2

. The

values of r0i and r0 ji; I can be normalized to the distance to any pumping well (see note to
Table 10.1). r0 is determined by Eq. 10.18 or Eq. 10.20
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10.1.1.6 Strip Aquifer: Constant-Head and Impermeable Boundaries

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4p T

XN
i¼1

Qi

W
r2i
4at

� �
þ
Xn

j¼1;3...

X2
I¼1

�1ð Þðjþ 2I�1Þ=2W
q j
i;I


 �2
4at

0
B@

1
CAþ

þ
Xn

j¼2;4...

�1ð Þj=2
X2
I¼1

W
q j
i;I


 �2
4at

0
B@

1
CA

2
666666664

3
777777775
:

ð10:23Þ

The solution (Eq. 10.23) was derived from Eq. 1.27. Similar relationships can be
derived from Eq. 1.28.

Steady-State Flow Equations
1. Solution based on the superposition principle:

sm ¼ 1
2p T

ln r0 ¼ 0:366
T

lg r0; ð10:24Þ

lg r0 ¼
XN
i¼1

Qi lg
qni;1
ri

Yn�3

j¼1;5;9...

q j
i;1q

jþ 1
i;1 qjþ 1

i;2 qjþ 2
i;2

qjþ 2
i;1 qjþ 3

i;1 q j
i;2q

jþ 3
i;2

 !
: ð10:25Þ

2. Green’s function solution:

sm ¼ 1
4pT

ln r0; ð10:26Þ

Table 10.6 Graphic-analytical parameter evaluation

Plot Method Relationship

lg s—lg t
Type curve: lgW0 uð Þ � lg

1
u T ¼ 1

4p 10D
, a ¼ r2110

E

4
s1 � s2ð Þ—lg t Horizontal straight line

T ¼ 2nþ 1ð ÞQt

2p � A ln
r02
r01

W0 uð Þ ¼
XN

i¼1
Qi W ur0i

� �þ Xn

j¼1

X2

I¼1
W ur0 ji; I

 �h i

; the determination of r0i and r0 ji; I see in the

note to Table 10.5; ln r0 ¼ 1
Qt

XN

i¼1
Qi ln ri

Yn

j¼1
q j
i;1q

j
i;2


 �1= 2nþ 1ð Þ� �
; Qt ¼

XN

i¼1
Qi
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ln r0 ¼
XN
i¼1

Qi ln
cosh

p yi
2L

� cos
p Lp þ Lw;i
� �

2L

� �
cosh

p yi
2L

þ cos
p Lp � Lw;i
� �

2L

� �

cosh
p yi
2L

þ cos
p Lp þ Lw;i
� �

2L

� �
cosh

p yi
2L

� cos
p Lp � Lw;i
� �

2L

� �:
ð10:27Þ

Here, Lp and Lw;i are the distances from the observation well and ith pumping well
to the constant-head boundary, m.

Graphic-Analytical Processing

The relationships given in Table 10.7 have been derived from Eqs. 10.23, 10.24,
and 10.26.

10.1.2 Point Source: Confined Aquifer Infinite
in the Horizontal Plane and Thickness

For analytical relationships for a single-well pumping test with constant discharge
rate, see Sect. 1.2.1.

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4p k

XN
i¼1

Qi

di
erfc

di
2
ffiffiffiffi
at

p ; ð10:28Þ

Table 10.7 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight line
T ¼ 1

2p � A ln r0a, T ¼ 1
4p � A ln r0b

lg s—lg t
Type curve: lgW0 uð Þ � lg

1
u T ¼ 1

4p 10D
, a ¼ r2110

E

4
sm—lg r0 Straight line

T ¼ 0:366
C

a, T ¼ 0:183
C

b

s1 � s2ð Þ—lg t Horizontal straight line
T ¼ 1

2p � A ln
r01
r02

a, T ¼ 1
4p � A ln

r01
r02

b

aWith the use of superposition principles
bBased on Green’s function
W0 uð Þ ¼

XN

i¼1
Qi W ur0i

� �þ Xn

j¼1;3...

X2

I¼1
�1ð Þðjþ 2I�1Þ=2W ur0 ji; I


 �
þ
Xn

j¼2;4...
�1ð Þj=2

X2

I¼1
W ur0 ji; I

 �h i

.

Determining r0i and r0 ji; I see in the note to Table 10.5. r0 is determined by Eqs. 10.25 or 10.27
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di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ z2i

q
; ð10:29Þ

here zi is the vertical distance between the center of the filter of the ith pumping well
and the observation well (see Fig. 1.10), m.

Quasi-Steady-State Flow Equation

s ¼ Qt

4p k
1
Qt

XN
i¼1

Qi

di
� 1ffiffiffiffiffiffiffiffi

p at
p

 !
: ð10:30Þ

Steady-State Flow Equation

sm ¼ 1
4p k

XN
i¼1

Qi

di
: ð10:31Þ

Graphic-Analytical Processing

The relationships given in Table 10.8 have been derived from Eqs. 10.28, 10.30,
and 10.31.

Table 10.8 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t Horizontal straight line
k ¼ 1

4p � A
XN
i¼1

Qi

di

lg s—lg t Type curve:

lg erfc0ðuÞ—lg
1
u2

k ¼ 1
4p 10D

, a ¼ d2110
E

4

s—
1ffiffi
t

p Straight line
k ¼ 1

4p � A
XN
i¼1

Qi

di
, a ¼ A=Cð Þ2

p
Qt

,XN
i¼1

Qi

di

 !2

s1 � s2ð Þ—lg t Horizontal straight line
k ¼ 1

4p � A
XN
i¼1

Qi

di;1
�
XN
i¼1

Qi

di;2

 !

erfc0 uð Þ ¼
XN

i¼1

Qi

di
erfc0 ud0i

� �
, d0i ¼ di=d1ð Þ2. The value of d0i can be normalized to the distance to

any pumping well (the distance to this well is used in evaluating the hydraulic diffusivity by
type-curve method)

10.1 Pumping with a Constant Discharge Rate 189

http://dx.doi.org/10.1007/978-3-319-43409-4_1


10.2 Pumping with a Variable Discharge Rate

The construction of analytical relationships for calculating the drawdown in aqui-
fers during pumping tests involving one or several pumping wells with discharge
rates arbitrarily varying over time is based on the principle of superposition.

Figure 10.2 shows an example of the layout with three pumping wells and one
observation well. A plot of discharge rate vs. time is given for each pumping well.

The drawdown in an aquifer under the effect of a pumping test is calculated as
the sum of the drawdowns induced by each pumping well separately. Each incre-
ment of the pumping-well discharge rate creates an additional term in the sum of
drawdown values. In this case, the discharge rate is assumed constant during each
interval between its changes (Fig. 10.2), i.e., it is described by a step-function. In
the case of aquifers bounded in the horizontal plane and/or thickness, a water-level
change caused by image wells, obtained by the reflection of pumping wells in
planar or vertical boundaries, will be superimposed on the overall flow pattern.

The general equation for the water-level drawdown in an observation well
during a multi-well test with variable discharge rate can be written as:

s ¼ P
XNþM

i¼1

Xnti
j¼1

Qj
i � Qj�1

i


 �
f ri; t � t ji

� �� 	
; ð10:32Þ

Fig. 10.2 An example of layout of three pumping wells with arbitrary step-wise variations of their
discharge rates

190 10 Multi-well Pumping Tests



where f is a drawdown function accounting for aquifer type; M is the number of
image wells for bounded aquifers (in the case of aquifers of infinite extent,M ¼ 0);N
is the number of pumping wells; nti is the number of steps in the discharge rate of the
ith pumping well by moment t; P is a constant value, depending on the conceptual
model;Qj

i is the discharge rate at the jth step in the ith pumping well (Q0
i ¼ 0), m3/d;

ri is the distance from the observation well to the ith pumping well (either real or
image), m; t is the time elapsed since the pumping began, d; t ji is the moment of the
start of the jth step in the discharge of the ith pumping well (t1i ¼ 0), d.

The basic analytical relationships given below exemplify a test of a confined
aquifer of infinite extent (see Sect. 1.1.1).

10.2.1 Single Pumping Well with a Variable Discharge Rate

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4pT

Xnt1
j¼1

Qj
1 � Qj�1

1


 �
W

r2

4a t � t j1
� �

 !
: ð10:33Þ

Quasi-Steady-State Flow Equation

s ¼ Qt

4p T
ln
2:25at0

r2
; ð10:34Þ

ln t0 ¼ 1
Qt

Xnt1
j¼1

Qj
1 � Qj�1

1


 �
ln t � t j1
� �

; ð10:35Þ

Qt ¼
Xnt1
j¼1

Qj
1 � Qj�1

1


 �
: ð10:36Þ

Graphic-Analytical Processing

The relationships given in Table 10.9 have been derived from Eq. 10.34.
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10.2.2 A System of Pumping Wells with a Variable
Discharge Rate

Basic Analytical Relationships

Transient Flow Equation

s ¼ 1
4p T

XN
i¼1

Xnti
j¼1

Qj
i � Qj�1

i


 �
W

r2i
4a t � t ji
� �

 !
: ð10:37Þ

Quasi-Steady-State Flow Equation

s ¼ Qt

4p T
ln
2:25at0

r02
; ð10:38Þ

ln t0 ¼ 1
Qt

XN
i¼1

Xnti
j¼1

Qj
i � Qj�1

i


 �
ln t � t ji
� �

; ð10:39Þ

ln r0 ¼ 1
Qt

XN
i¼1

ln ri
Xnti
j¼1

Qj
i � Qj�1

i


 �
; ð10:40Þ

Qt ¼
XN
i¼1

Xnti
j¼1

Qj
i � Qj�1

i


 �
: ð10:41Þ

Graphic-Analytical Processing

The relationships given in Table 10.10 have been derived from Eq. 10.38.

Table 10.9 Graphic-analytical parameter evaluation

Plot Method Relationship
s
Qt

—lg t0 Straight line
T ¼ 0:183

C
; lg a ¼ A

C
þ lg

r2

2:25
s
Qt

—lg r Straight line
T ¼ 0:366

C
; lg a ¼ 2

A
C
� lgð2:25 � t0Þ

s
Qt

—lg
t0

r2
Straight linea

T ¼ 0:183
C

; lg a ¼ A
C
� lgð2:25Þ

aAll measurements fall on the same straight line
The measurements made during a stop of pumping are ignored in the construction of the plot. r0 is
evaluated by Eq. 10.40
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10.3 Simultaneous Pumping from Two Aquifers
Separated by an Aquitard

The pumping test is carried out in a leaky aquifer system, as described in Sect. 3.2,
except that the wells are pumping both adjacent aquifers. This section considers
leaky aquifers of infinite lateral extent (Sect. 10.3.1) and those limited by a circular
boundary (Sect. 10.3.2).

10.3.1 Aquifers of Infinite Lateral Extent

The basic assumptions and conditions (Fig. 10.3):

• the general conditions for a leaky aquifer of infinite lateral extent are considered
(see the beginning of Sect. 3.2.1);

• two pumping wells are located in two adjacent aquifers (1) and (2).

Fig. 10.3 Leaky aquifers with pumping from two aquifers through a a single pumping well with
two screens and b two wells

Table 10.10 Graphic-analytical parameter evaluation

Plot Method Relationship
s
Qt

—lg t0 Straight linea
T ¼ 0:183

C
; lg a ¼ A

C
þ lg

r02

2:25
s
Qt

—lg r0 Straight line
T ¼ 0:366

C
; lg a ¼ 2

A
C
� lgð2:25t0Þ

s
Qt

—lg
t0

r02
Straight lineb

T ¼ 0:183
C

; lg a ¼ A
C
� lgð2:25Þ

aThe number of linear segments corresponds to the number of discharge steps
bAll measured values fall onto a single linear segment
The measurements made during a stop of pumping are ignored in the construction of the plot
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Solutions are given for calculating the drawdown in two aquifers during
pumping (1) from a single well (or two close wells), pumping both aquifers
(Fig. 10.3a) and (2) two pumping wells located at some distance from one another
(Fig. 10.3b). The second solution admits asynchronous starts of the operation of
pumping wells.

Basic Analytical Relationships

Transient Flow Equations

1. The drawdown in observation wells (Fig. 10.3a) located in the first and
second aquifers during pumping from a single well can be written as (Babushkin
et al. 1974):

sð1Þ � 1
4p T1 þ T2ð Þ Q1 þQ2ð ÞW r2

4a�t

� �
þ Q1

T2
T1

� Q2

� �
W

r2

4a�t
;
r
B�

� �� �
;

ð10:42Þ

sð2Þ � 1
4p T1 þ T2ð Þ Q1 þQ2ð ÞW r2

4a�t

� �
þ Q2

T1
T2

� Q1

� �
W

r2

4a�t
;
r
B�

� �� �
;

ð10:43Þ

a� ¼ 2a1a2
a1 þ a2

; ð10:44Þ

where sð1Þ; sð2Þ are the drawdown values for the first and second aquifers, m; Q1; Q2

are the discharge rates for the first and second aquifers, respectively, m3/d; r is the
distance from the observation well located in one of the aquifers to the pumping well,
m; T1 ¼ k1m and T2 ¼ k2m are the transmissivities of the first and second aquifers,
respectively, m2/d; a1 ¼ T1=S1 and a2 ¼ T2=S2 are the hydraulic diffusivities of the
first and second aquifers, respectively, m2/d; S1; k1; m1 and S2; k2; m2 are storage
coefficients (dimensionless), the hydraulic conductivities (m/d) and thicknesses
(m) of the first and second aquifers, respectively; W uð Þ and W u;bð Þ are the
well-function and the well-function for a leaky aquifer, respectively (see Appendixes
7.1 and 7.2). For the formulas for calculating B�, see Eqs. 3.49–3.53.

Equations 10.42 and 10.43 are applicable to time t[ 5m02=a0, where a0; m0 are
the hydraulic diffusivity (m2/d) and thickness (m) of the separating aquitard.

2. The drawdown in the quasi-steady flow period in observation wells
(Fig. 10.3b), located in the first and second aquifers pumped from two pumping
wells (Hantush 1967) can be calculated as:
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sð1Þ ¼
Q1

4p T1 þ T2ð Þ ln
2:25a�t

r21
þ 2

T2
T1

K0
r1
B�

 �� �

þ

þ Q2

4p T1 þ T2ð Þ ln
2:25a� t � t0ð Þ

r22
� 2K0

r2
B�

 �� �

8>>><
>>>:

9>>>=
>>>;
; ð10:45Þ

sð2Þ ¼
Q1

4p T1 þ T2ð Þ ln
2:25a�t

r21
� 2K0

r1
B�

 �� �

þ

þ Q2

4p T1 þ T2ð Þ ln
2:25a� t � t0ð Þ

r22
þ 2

T1
T2

K0
r2
B�

 �� �

8>>><
>>>:

9>>>=
>>>;
; ð10:46Þ

where K0 �ð Þ is modified Bessel function of the second kind of the zero order (see
Appendix 7.13); t0 is the interval between the start of pumping-well operation in
aquifers (1) and (2), d; r1; r2 are the distances from the observation well located in
one of the aquifers to the pumping well located in the first and second aquifers,
respectively, m.

10.3.2 Circular Aquifers

The basic assumptions and conditions (Fig. 10.4) are:

• general conditions for a leaky aquifer of infinite lateral extent are considered
(see the beginning of Sect. 3.2.1);

• the external contour of the aquifer is a circular boundary of groundwater flow;
• the pumping well is located in the center of the circular aquifer; the pumping is

carried out from the two adjacent aquifers simultaneously.

Fig. 10.4 Circular leaky
aquifer system with the
simultaneous testing of two
adjacent aquifers:
a cross-section and b planar
view
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Either of the two boundary conditions: (1) constant head boundary or
(2) impermeable boundary is specified on the external contour of the aquifer
(see Fig. A3.10a, c).

Basic Analytical Relationships

Transient Flow Equations

1. The external contour of the aquifer is a constant-head boundary. The draw-
downs in the first and second aquifers (Hantush 1967) are:

sð1Þ ¼ Q1

2p T1 þ T2ð Þ ln
R
r
þ T2

T1
K0

r
B�

 �

� K0
R
B�

� �
I0

r
B�

 �


I0
R
B�

� �� �
�

�

� 2a1R2

a2B�2
X1
n¼1

1
kn

1
en
exp �en

a2t
R2


 �
� 1
dn

exp �dn
a2t
R2


 �� �
bn

� �
�

� 2a1B2
2

a2B�2
X1
n¼1

1
kn

1� x2n
dn

� �
exp �dn

a2t
R2


 �
� 1� x2n

en

� �
exp �en

a2t
R2


 �� �
bn

� �)
þ

þ Q2

2p T1 þ T2ð Þ ln
R
r
� K0

r
B�

 �

þK0
R
B�

� �
I0

r
B�

 �


I0
R
B�

� �
�

�

�2
a2R2

a1B�2
X1
n¼1

1
k0n

1
e0n
exp �e0n

a1t
R2


 �
� 1
d0n

exp �d0n
a1t
R2


 �� �
bn

� �)
;

ð10:47Þ

sð2Þ ¼ Q1

2p T1 þ T2ð Þ ln
R
r
� K0

r
B�

 �

þK0
R
B�

� �
I0

r
B�

 �


I0
R
B�

� �
�

�

�2
a1R2

a2B�2
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n¼1

1
kn

1
en
exp �en

a2t
R2


 �
� 1
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exp �dn
a2t
R2


 �� �
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� �)
þ

þ Q2

2p T1 þ T2ð Þ ln
R
r
þ T1

T2
K0

r
B�

 �

� K0
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B�

� �
I0
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 �


I0
R
B�

� �� �
�

�

� 2a2R2

a1B�2
X1
n¼1

1
k0n

1
e0n
exp �e0n

a1t
R2


 �
� 1
d0n

exp �d0n
a1t
R2


 �� �
bn

� �
�

� 2a2B2
1

a1B�2
X1
n¼1

1
k0n

1� x2n
d0n

� �
exp �d0n

a1t
R2


 �
� 1� x2n

e0n

� �
exp �e0n

a1t
R2
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bn

� �)
;

ð10:48Þ

bn ¼
J0 xn r=Rð Þ
J21 xnð Þ ; ð10:49Þ

where R is the radius of the circular aquifer, m; xn are the positive roots of the
equation J0 xnð Þ ¼ 0 (see Appendix 7.15); J0 �ð Þ and J1 �ð Þ are Bessel functions of the
first kind of the zero and the first order; I0 �ð Þ and K0 �ð Þ are modified Bessel
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functions of the first and the second kind of the zero order (see Appendix 7.13); for
kn; dn; en—see formulas (Eqs. 3.60–3.62);

k0n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
a1

� �
x2n þ

R2

B2
1
� a2R2

a1B2
2

� �2
þ 4

a2R4

a1B2
2B

2
1

s
; ð10:50Þ

d0n ¼ 0:5 1þ a2
a1

� �
x2n þ

R2

B2
1
þ a2R2

a1B2
2
þ k0n

� �
; ð10:51Þ

e0n ¼ 0:5 1þ a2
a1

� �
x2n þ

R2

B2
1
þ a2R2

a1B2
2
� k0n

� �
; ð10:52Þ

B�; B1; B2 are evaluated with Eqs. 3.49–3.53.

2. The external contour of the aquifer is an impermeable boundary. The draw-
downs in the first and second aquifers can be evaluated as (Bochever 1968):

s ¼ Q1 þQ2

4pT
2
at
R2 þ ln

R
r
� 2
3
þ r2

2R2 � 2
X1
n¼1

J0 xn;1 r=R
� �

x2n;1 J
2
0 xn;1
� � exp �x2n;1

at
R2


 �" #(
�

� Q1 � Q2

4p T
K0

r
B


 �
þ I0

r
B


 �K1 R=Bð Þ
I1 R=Bð Þ � 2

B2

R2 exp �R2

B2

at
R2

� �
�

�

�2
X1
n¼1

J0 xn;1 r=R
� �

x2n;1 þR2=B2

 �

J20 xn;1
� � exp � x2n;1 þ

R2

B2

� �
at
R2

� �35
9=
; ;

ð10:53Þ

where xn;1 are the positive roots of the equation J1 xn;1
� � ¼ 0 (see Appendix 7.15);

I1 �ð Þ and K1 �ð Þ are modified Bessel functions of the first and the second kind of the
first order (see Appendix 7.13); the sign “±”: the plus sign is used when evaluating
the drawdown in the observation well located in the first aquifer (s ¼ sð1Þ), and the
minus sign is used for the drawdown in the observation well in the second aquifer
(s ¼ sð2Þ).

10.4 Dipole Flow Tests

A dipole flow test is simultaneous pumping out and injection into of two test wells
located some distance from one another in the horizontal or vertical plane. The
magnitudes of the discharge rate in the wells are the same.
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10.4.1 Horizontal Dipole

Two fully penetrating wells are located at a distance (L) from one another in an
isotropic aquifer of infinite lateral extent. Three aquifer types (confined, unconfined,
and leaky aquifers) are considered (Fig. 10.5). Water is being pumped at a constant
rate from one well and injected into the other well at the same rate.

Basic Analytical Relationships

Transient Flow Equations
The drawdown (drawup) in the confined aquifer (Fig. 10.4a) is:

s ¼ Q
4pT

W
r21S
4Tt

� �
�W

r22S
4Tt

� �� �
; ð10:54Þ

in the unconfined aquifer (Fig. 10.4b):

Fig. 10.5 Dipole flow test in a confined, b unconfined and d leaky aquifer. a, b, d Cross-sections;
c planar view with distances from the observation well to the pumping and injection wells
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s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

2p k
W

r21Sy
4kmt

� �
�W

r22Sy
4kmt

� �� �s
ð10:55Þ

and in a leaky aquifer (Fig. 10.4c):

s ¼ Q
4pT

W
r21S
4Tt

;
r1
B

� �
�W

r22S
4Tt

;
r2
B

� �� �
; ð10:56Þ

where r1; r2 are the distances to the pumping and injection well, respectively, m;
S; Sy are the specific storage of the confined aquifer and the specific yield of the
unconfined aquifer, respectively, dimensionless; k; m are the hydraulic conduc-
tivity (m/d) and the initial water-saturated thickness (m) of the unconfined aquifer;
B is the leakage factor (m), which is determined by the number of adjacent aquifers
(see Appendix 1).

If the observation well is located closer to the pumping well (r1\r2), then s is
the drawdown. If the observation well is located closer to the injection well
(r1 [ r2), then s is the drawup (in this case, the value is negative: s\0). On the line
where the distances from the test wells are equal (r1 ¼ r2), the water-level change is
zero (s ¼ 0).

The Eqs. 10.54–10.56 were constructed based on the superposition principle and
appropriate equations for aquifers of infinite lateral extent (Eqs. 1.1, 2.22, and 3.1).
Equation 10.55 refers only to the gravity-drainage period. Equation 10.56 refers to
an arbitrary configuration of the main and adjacent aquifers shown in Fig. 3.2.

Steady-State Flow Equations

1. The maximal drawdown (drawup) in an observation well located in a confined
aquifer (Fig. 10.4a) at a distance r1 from the pumping well is (Jacob 1949):

sm ¼ Q
2p T

ln
r2
r1
: ð10:57Þ

The maximal change in the water level in one of the test wells (Jacob 1949) is:

smw ¼ Q
2p T

ln
L� rw
rw

� Q
2p T

ln
L
rw

; ð10:58Þ

where L is the distance between the test wells, m; rw is the radius of the test well, m.
In practical calculations, the wellbore radius under the logarithm in the

numerator in Eq. 10.58 can be neglected.
2. In an unconfined aquifer (Fig. 10.4b), the water-level change in the obser-

vation well can be described by the solution (Kerkis 1956):
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sm 2m� smð Þ ¼ Q
p k

ln
r2
r1
; ð10:59Þ

and, similarly to Eq. 10.58, the water-level change in a test well can be calculated
as (Kerkis 1956):

smw 2m� smwð Þ ¼ Q
p k

ln
L� rw
rw

� Q
p k

ln
L
rw

: ð10:60Þ

3. Leaky aquifer (Fig. 10.4c). The water-level change in an observation well is:

sm ¼ Q
2pT

K0
r1
B


 �
� K0

r2
B


 �h i
ð10:61Þ

and in the test well:

smw ¼ Q
2pT

K0
rw
B


 �
� K0

L
B

� �� �
: ð10:62Þ

In practical calculations, when r2=B\0:05, Eq. 10.61 can be replaced by the
solution Eq. 10.57 for a confined aquifer. This follows from an approximation of
function K0 �ð Þ for a small argument (see Appendix 7.13).

Fig. 10.6 A vertical dipole test in a a nonleaky and b a leaky aquifer
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10.4.2 Vertical Dipole

A partially penetrating test well with dipole chambers is located in a homogeneous,
vertically anisotropic nonleaky (Fig. 10.6a) or leaky aquifer (Fig. 10.6b) of infinite
lateral extent. Water is withdrawn from the upper chamber at a constant rate and
pumped at the same rate into the lower chamber. The drawdown in the upper
chamber and the drawup in the lower chamber of the test well, as well as
water-level changes in a piezometer, located in any point in the aquifer, are
determined.

Basic Analytical Relationships

Transient Flow Equations

1. Water-level changes in a piezometer located in a nonleaky aquifer (Fig. 10.6a)
are:

s ¼ Q
p2krlw

X1
n¼1

1
n
W
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4krmt
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� �
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� cos
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2
664

3
775 ð10:63Þ

and in a leaky aquifer (Fig. 10.6b):

s ¼ Q
p2krlw

X1
n¼1

1
n
W

r2S
4krmt

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
Br

� �2

þ v
np r
m


 �2s0
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� cos
np zw2
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sin

np lw
2m

cos
np LTp
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2
6664

3
7775; ð10:64Þ

where zw1; zw2 are the vertical distances from the aquifer top to the centers of the
upper and lower chamber, respectively, m; v ¼ ffiffiffiffiffiffiffiffiffiffi

kr=kz
p

is anisotropy factor,
dimensionless; kr; kz are horizontal and vertical hydraulic conductivities, respec-
tively, m/d; LTp is the vertical distance from the aquifer top to the open part of the

piezomenter, m; lw is the length of a dipole chamber, m; Br ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krmm0=k0

p
is the

leakage factor, m.
Equation 10.63 was derived from Hantush solutions Eqs. 1.104 and 1.105.

Equation 10.64 was derived from the Hantush solution Eq. 3.89.
2. Water-level changes in a dipole chamber of the well located in a nonleaky

aquifer (Fig. 10.6a) (Kabala 1993) are:
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and in a leaky aquifer (Fig. 10.6b):
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where z ¼ zw1, when the drawdown in the upper chamber is determined; z ¼ zw2,
when the drawup in the lower chamber is determined.

Equation 10.65 was derived from Eq. 10.66 at Br ! 1.
3. Water-level changes in a piezometer during a dipole test in an aquifer infinite

in thickness (Fig. 10.7) (Zlotnik and Ledder 1996) are:

s ¼ Q
8p krlw

M
r2Ss
4krt

;
0:5lw þ z1

vr

� �
þM

r2Ss
4krt

;
0:5lw � z1

vr

� �
�

�M
r2Ss
4krt

;
0:5lw þ z2

vr

� �
�M

r2Ss
4krt

;
0:5lw � z2

vr

� �
2
664

3
775; ð10:67Þ

where Ss is the specific storage, 1/m; z1; z2 are the vertical distances from the
centers of the upper and lower chamber to the open part of the piezomenter, m.

Fig. 10.7 A vertical dipole
test in an aquifer infinite in the
horizontal plane and thickness
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The relationship (Eq. 10.67), for an aquifer infinite in thickness, follows from
Eq. 1.97.

Steady-State Flow Equations

1. Water-level changes in a piezometer located in a nonleaky aquifer (Fig. 10.6a)
are:

sm ¼ 2Q
p2krlw

X1
n¼1

1
n
K0 v

np r
m


 �
�

� cos
np zw1
m

� cos
np zw2
m


 �
sin

np lw
2m

cos
npLTp
m

2
64

3
75 ð10:68Þ

and in a leaky aquifer (Fig. 10.6b):

sm ¼ 2Q
p2krlw

X1
n¼1

1
n
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
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np r
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 �2s0
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� cos
np zw1
m

� cos
np zw2
m


 �
sin

np lw
2m

cos
npLTp
m

2
6664

3
7775 ð10:69Þ

2. Water-level changes in a dipole chamber of a well in a nonleaky aquifer
(Fig. 10.6a) (Kabala 1993) is:

smw ¼ 2Q
p krm

X1
n¼1

2m
np lw

sin
np lw
2m
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 �
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�
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z
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 �
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 �
8><
>:

9>=
>;

ð10:70Þ

and in a leaky aquifer (Fig. 10.6b):

smw ¼ 2Q
p krm

X1
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2m
np lw

sin
np lw
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sin np
zw2 þ zw1
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�
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z
m


 �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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8>>>><
>>>>:

9>>>>=
>>>>;
;

ð10:71Þ

z—see note to Eqs. 10.65 and 10.66.
Equation 10.70 was derived from Eq. 10.71 at Br ! 1.
The time of the beginning of a steady-state period is evaluated by the formula

(Kabala 1993):
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ts ¼ 5
mS

p2v2kr
¼ 5

mS
p2kz

: ð10:72Þ

3. Water-level changes in a piezometer during a dipole test in an aquifer infinite
in thickness (Fig. 10.7) (Zlotnik and Ledder 1996) are:

sm ¼ Q
4p krlw

arcsinh
z1 þ 0:5lw

vr

� �
� arcsinh

z1 � 0:5lw
vr

� �
þ

þ arcsinh
z2 � 0:5lw

vr

� �
� arcsinh

z2 þ 0:5lw
vr

� �
8>><
>>:

9>>=
>>;: ð10:73Þ

The steady-state relationship (Eq. 10.73), for an aquifer infinite in thickness,
follows from Eq. 1.98.
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Chapter 11
Recovery Tests

The analytical solutions for describing water-level recovery after a pumping test
were constructed based on the superposition principle (see Sect. 10.2), which, in
this case, determines the water-level changes in a well as the sum of drawdown
values corresponding to two periods: pumping from the well with some (constant or
variable) discharge rate and level recovery at a zero discharge rate.

The methods of processing depend on the moment considered as the beginning
of the water-level recovery record: (1) the change in the level is measured from the
water elevation at the start of pumping test, i.e., static level; (2) the change in the
level is measured from the start of recovery, i.e., the dynamic level at the moment
when pumping stopped. Figure 11.1 contains plots of the water-level changes,
representing the same recovery data with different reference points. As shown
below, such an approach extends the potentialities for evaluating hydraulic
parameters by graphic-analytical methods.

The expressions for water-level changes in an observation well are written as the
drawdown at pumping with two discharge stages (see Sect. 10.2.1). The solution
for the former case (Fig. 11.1a) for an aquifer infinite in the horizontal plane (see
Sect. 1.1.1) can be written as:

s ¼ Q1

4pT
W

r2

4a t0 þ trð Þ
� �

þ Q2 � Q1

4pT
W

r2

4atr

� �
; ð11:1Þ

and that for the latter case (Fig. 11.1b), as:

sr ¼ s0 � s; ð11:2Þ

s0 ¼ Q1

4pT
W

r2

4at0

� �
; ð11:3Þ

where s is the drawdown in the observation well after the cessation of pumping at
moment tr (i.e., the water-level recovery measured from the initial static level in the
well), m; s0 is the drawdown in the observation well at the moment of pumping
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cessation, m; sr is the recovery in the observation well after the cessation of
pumping at moment tr, m; t0 is pumping duration, d; tr is the time from the start of
recovery, d; Q1 ¼ Q is the discharge rate during pumping, m3/d; Q2 ¼ 0 is zero
discharge since the moment of pumping cessation, m3/d; T is the transmissivity,
m2/d; a is the hydraulic diffusivity, m2/d; W �ð Þ is well-function (see Appendix 7.1).

Equations 11.1 and 11.2 correspond to Eqs. 11.9 and 11.12. These equations
have respective logarithmic approximations:

s ¼ Q
4pT

ln
2:25a t0 þ trð Þ

r2
� Q
4pT

2:25atr
r2

; ð11:4Þ

sr ¼ Q
4pT

ln
2:25at0

r2
� Q
4pT

ln
2:25a t0 þ trð Þ

r2
þ Q

4pT
2:25atr

r2
: ð11:5Þ

Minor transformations of Eqs. 11.4 and 11.5 lead to basic relationships
(Eqs. 11.10 and 11.13) for the level-recovery period, which can be used for
graphic-analytical processing of recovery test data.

Any solution, describing water level changes in a well (see Chaps. 1–7), can be
written by analogy with Eqs. 11.1 and 11.2, with the well function replaced by a
function required for the solution, so:

s� f t0 þ trð Þ � f trð Þ; ð11:6Þ

sr � f t0ð Þ � f t0 þ trð Þþ f trð Þ; ð11:7Þ

where f is an arbitrary function of time entering into the flow equation.
Water-level recovery in a well can be treated in the same manner as a

constant-discharge pumping test with the use of all appropriate relationships.
However, it should be taken into account that such processing (when the pumping
period is ignored) may cause errors in transmissivity estimates. Thus, at the duration

Fig. 11.1 An example of time–drawdown plots, where water-level recovery is measured from
a the static level at the moment when pumping was started and b the dynamic level at the moment
of pumping cessation. tr is the time elapsed from the start of recovery
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of total recovery (tr) less than 10 % of pumping duration (t0), i.e., at tr � 0:1t0, the
effect of pumping can be ignored in recovery processing, while at the ratio
tr=t0 ¼ 2:5, the error will be a 45 % overestimation (Borevskiy et al. 1973). In the
case of areal analysis, on the distance–drawdown plot (see Sect. 12.1.1), the error
caused by the neglect of the pumping period will be less.

In addition, a treatment procedure is possible that involves simultaneous pro-
cessing of the pumping-test and the recovery-test data (Fig. 11.2).

This approach is analogous to processing the data of a variable-discharge
pumping test (see Sect. 10.2.1) with the discharge rate for the last stage taken as
zero. The solution in this case is written separately for two periods (an example
using the Theis solution):

s ¼
Q

4pT
W

r2

4at

� �
; t� t0

Q
4pT

W
r2

4at

� �
�W

r2

4a t � t0ð Þ
� �� �

; t[ t0 :

8>>><
>>>:

ð11:8Þ

The system of equations (Eq. 11.8) can also be written for several pumping
wells with the use of Eq. 10.2 and, in the case of variable discharge, Eqs. 10.33 and
10.37. The functional relationships for the water-level recovery after a multi-well
pumping at constant discharge rate are given in Sect. 11.2.

Treated below are the analytical relationships underlying graphic-analytical
methods for evaluating hydraulic parameters based on data on water-level recovery.

11.1 A Single Pumping Well with a Constant
Discharge Rate

11.1.1 Confined Aquifer

This section gives transient, quasi-steady-state, and steady-state relationships
describing water-level recovery in an infinite, semi-infinite, and bounded-in-the-

Fig. 11.2 An example of a
time–drawdown plot (s—lg t),
constructed for simultaneous
processing of the drawdown
and recovery data
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horizontal plane aquifer (see Sect. 1.1). Transient flow equations were constructed
with the use of the superposition principle and Theis solution (Eq. 1.3). For strip
aquifers, solutions based on Green’s function are also given.

Characteristic plots of water-level recovery in an infinite aquifer and their sen-
sitivity to variations of hydraulic parameters are given in Figs. 12.32 and 12.33.

11.1.1.1 Aquifer of Infinite Lateral Extent

Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equation (Theis 1935)

s ¼ Q
4pT

W
r2

4a t0 þ trð Þ
� �

�W
r2

4atr

� �� �
: ð11:9Þ

Quasi-Steady-State Flow Equation

s ¼ Q
4pT

ln
t0 þ tr
tr

¼ 0:183Q
T

lg
t0 þ tr
tr

: ð11:10Þ

The difference between the storage parameters of an aquifer during pumping and
the recovery test is accounted for in the following equation for recovery in the
quasi-steady-state flow period (Jacob 1963):

s ¼ Q
4pT

ln
t0 þ tr
tr

� ln
S
SR

� �
; ð11:11Þ

where SR is the storage coefficient at water-level recovery (it may differ from the
storage coefficient S at pumping).

Graphic-Analytical Processing
The relationships given in Table 11.1 have been derived from Eqs. 11.10 and
11.11.

The straight line must pass through the origin of coordinates (Fig. 11.3), if the
aquifer storage coefficient is the same for the pumping and recovery phases
(S=SR ¼ 1) (see the calculation of this ratio in Table 11.1). The straight line may
also deviate from the origin because of errors in the measurements of the static level
(Shestakov 1973).

Basic Analytical Relationships (recovery is measured from the end of pumping)

Transient Flow Equation

sr ¼ Q
4p T

W
r2

4at0

� �
�W

r2

4a t0 þ trð Þ
� �

þW
r2

4atr

� �� �
: ð11:12Þ
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Quasi-Steady-State Flow Equation

sr ¼ Q
4pT

ln
2:25at0

r2
¼ 0:183Q

T
lg
2:25at0

r2
; ð11:13Þ

t0 ¼ t0tr
t0 þ tr

: ð11:14Þ

Graphic-Analytical Processing
The relationships in Table 11.2 have been derived from Eq. 11.13.

Table 11.1 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg
t0 þ tr
tr

Straight
linea T ¼ 0:183Q

C
,
SR
S

¼ 10A=C , lg a ¼ lg
r2

2:25t0
þ s0

C
c

s1 � s2ð Þ—lg tr Horizontal
straight line

T ¼ Q
2p � A ln

r2
r1

s0 � sð Þ—lg
t0tr

t0 þ tr
Straight
lineb T ¼ 0:183Q

C
, lg a ¼ A

C
þ lg

r2

2:25

A is the intercept on the ordinate (see Sects. 12.1.1 and 12.1.2); C is the slope of the straight line
(see Sect. 12.1.1); s1; s2; r1; r2 are recovery values (s), measured from the start of pumping, and
the distances from the pumping well (r) to the first and second observation wells; s0 is the
drawdown at the end of pumping
aThe straight line passes through the origin
bs0 � s ¼ sr , the treatment procedure is the same as for the plot sr—lg t0 in Table 11.2
cThis relationship was taken from Borevskiy et al. (1973)

Fig. 11.3 Schematic plot
of water-level recovery with
the static level specified (1)
correctly and (2) incorrectly
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11.1.1.2 Semi-infinite Aquifer: Constant-Head Boundary

Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equation

s ¼ Q
4pT

W
r2

4a t0 þ trð Þ
� �

�W
q2

4a t0 þ trð Þ
� �

�W
r2

4atr

� �
þW

q2

4atr

� �� �
;

ð11:15Þ

where q is the distance between the observation and image wells (see Fig. A3.2 and
Eq. A3.1), m.

Graphic-Analytical Processing
The relationships in Table 11.3 have been derived from Eq. 11.17. The parameters
in this table are determined by the initial measurements of recovery.

Table 11.2 Graphic-analytical parameter evaluation

Plot Method Relationship

sr—lg r Straight line
T ¼ 0:366Q

C
, lg a ¼ 2

A
C
� lgð2:25 � t0Þ

sr—lg t0 The same
T ¼ 0:183Q

C
, lg a ¼ A

C
þ lg

r2

2:25

sr—lg
t0

r2
The same

T ¼ 0:183Q
C

, lg a ¼ A
C
� lgð2:25Þ

sr;1 � sr;2
� �

—lg tr Horizontal straight line
T ¼ Q

2p � A ln
r2
r1

sr1; sr2 are water-level recovery values measured from the end of pumping for the first and second
observation wells

Table 11.3 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg tr Horizontal straight line
T ¼ Q

2p � A ln
q
r

s—lg
q
r

Straight line
T ¼ 0:366Q

C

s1 � s2ð Þ—lg tr Horizontal straight line
T ¼ Q

2p � A ln
q1r2
q2r1

q1; q2 are the distances from the first and second observation wells to the image well, respectively
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Basic Analytical Relationships (recovery is measured from the end of pumping)

Transient Flow Equation

sr ¼ Q
4pT

W
r2

4at0

� �
�W

q2

4at0

� �
�W

r2

4a t0 þ trð Þ
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þ

þW
q2

4a t0 þ trð Þ
� �
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r2

4atr

� �
�W

q2

4atr

� �
2
6664

3
7775: ð11:16Þ

Steady-State Flow Equation

smr ¼ Q
2pT

ln
q
r
¼ 0:366Q

T
lg
q
r
: ð11:17Þ

Graphic-Analytical Processing
The relationships given in Table 11.4 have been derived from Eq. 11.17.

11.1.1.3 Aquifer Semi-infinite in the Horizontal Plane: Impermeable
Boundary

Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equation

s ¼ Q
4pT

W
r2

4a t0 þ trð Þ
� �

þW
q2

4a t0 þ trð Þ
� �

�W
r2

4atr

� �
�W

q2

4atr

� �� �
:

ð11:18Þ

Quasi-Steady-State Flow Equation

s ¼ Q
2pT

ln
t0 þ tr
tr

¼ 0:366Q
T

lg
t0 þ tr
tr

: ð11:19Þ

Table 11.4 Graphic-analytical parameter evaluation

Plot Method Relationship

sr—lg tr Horizontal straight linea
T ¼ Q

2p � A ln
q
r

smr—lg
q
r

Straight line
T ¼ 0:366Q

C

sr;1 � sr;2
� �

—lg tr Horizontal straight linea
T ¼ Q

2p � A ln
q1r2
q2r1

aParameters are determined based on the final measurements of level recovery
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Graphic-Analytical Processing
The relationships given in Table 11.5 have been derived from Eqs. 11.19 and
11.21.

Basic Analytical Relationships (recovery is measured from the end of pumping)

Transient Flow Equation

sr ¼ Q
4pT

W
r2

4at0

� �
þW

q2

4at0

� �
�W

r2

4a t0 þ trð Þ
� �

�

�W
q2

4a t0 þ trð Þ
� �

þW
r2

4atr

� �
þW

q2

4atr

� �
2
6664

3
7775: ð11:20Þ

Quasi-Steady-State Flow Equation

sr ¼ Q
2pT

ln
2:25at0

rq
¼ 0:366Q

T
lg
2:25at0

rq
; ð11:21Þ

where t0 is determined from (Eq. 11.14).

Graphic-Analytical Processing
The relationships given in Table 11.6 have been derived from Eq. 11.21.

Table 11.5 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg
t0 þ tr
tr

Straight linea
T ¼ 0:366Q

C

s1 � s2ð Þ—lg tr Horizontal straight lineb
T ¼ Q

2p � A ln
q2r2
q1r1

aThe parameters are evaluated for a linear segment passing from the origin of coordinates (the last
recovery values); the linear segment, corresponding to the initial recovery values, would yield
double transmissivity
bTransmissivity is evaluated for a linear segment corresponding to the initial values of the
water-level recovery

Table 11.6 Graphic-analytical parameter evaluation

Plot Method Relationship

sr—lg t0 Straight line
T ¼ 0:366Q

C
, lg a ¼ A

C
þ lg

rq
2:25

sr—lg rq The same
T ¼ 0:366Q

C
, lg a ¼ A

C
� lgð2:25 � t0Þ

sr—lg
t0

rq
The same

T ¼ 0:366Q
C

, lg a ¼ A
C
� lgð2:25Þ

sr;1 � sr;2
� �

—lg tr Horizontal straight line
T ¼ Q

2p � A ln
q2r2
q1r1
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11.1.1.4 Strip Aquifer: Constant-Head Boundary

Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equation

s ¼ Q
4pT

W
r2

4a t0 þ trð Þ
� �

þ
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i

� �2
4a t0 þ trð Þ

" #
�

�W
r2

4atr

� �
�
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i

� �2
4atr

" #
8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð11:22Þ

where q j
i is the distance from the observation well to the jth image well reflected

from the left (i ¼ 1) or right (i ¼ 2) planar boundaries (see Fig. A3.4); it is
determined by Eqs. A3.3 and A3.4, m; n ! 1 is the number of reflections from a
boundary.

Quasi-Steady-State Flow Equation

s ¼ Q
4pT

ln
t0 þ tr
tr

¼ 0:183Q
T

lg
t0 þ tr
tr

: ð11:23Þ

Graphic-Analytical Processing
The relationships given in Table 11.7 have been derived from Eqs. 11.23, 11.25,
and 11.26.

Table 11.7 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg
t0 þ tr
tr

Straight line
T ¼ 0:183Q

C

s—lg tr Horizontal straight linea
T ¼ Q

2p � A r0b, T ¼ Q
4p � A r0c

s1 � s2ð Þ—lg tr The same
T ¼ Q

2p � A ln
r01
r02

b, T ¼ Q
4p � A ln

r01
r02

c

aThe parameters are evaluated for a linear segment corresponding to the initial values of
water-level recovery
bFrom solution (Eq. 1.20), r0 is evaluated from Eq. 1.21
cFrom solution (Eq. 1.21), r0 is evaluated from Eq. 1.23
r01; r

0
2 are reduced distances for the first and second observation wells
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Basic Analytical Relationships (recovery is measured from the end of pumping)

Transient Flow Equation

sr ¼ Q
4pT

W
r2

4at0

� �
þ
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i

� �2
4at0

" #
�W

r2
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�
(

�
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i

� �2
4a t0 þ trð Þ

" #
þW

r2

4atr

� �
þ
Xn
j¼1

�1ð Þ j
X2
i¼1

W
q j
i

� �2
4atr

" #)
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ð11:24Þ

Steady-State Flow Equations
1. Based on the superposition principle:

smr ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð11:25Þ

where r0 is reduced distance, evaluated from Eq. 1.21.
2. Based on Green’s function:

smr ¼ Q
4pT

ln r0 ¼ 0:183Q
T

lg r0; ð11:26Þ

where r0 is determined by Eq. 1.23.

Graphic-Analytical Processing
The relationships given in Table 11.8 have been derived from Eqs. 11.25 and
11.26.

Table 11.8 Graphic-analytical parameter evaluation

Plot Method Relationship

sr—lg tr Horizontal straight linea
T ¼ Q

2p � A ln r0b, T ¼ Q
4p � A ln r0c

smr—lg r0 Straight line
T ¼ 0:366Q

C
b, T ¼ 0:183Q

C
c

sr;1 � sr;2
� �

—lg tr Horizontal straight linea
T ¼ Q

2p � A ln
r01
r02

b, T ¼ Q
4p � A ln

r01
r02

c

aThe parameters are evaluated for a linear segment corresponding to the final values of water-level
recovery
b, cSee note to Table 11.7
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11.1.1.5 Strip Aquifer: Impermeable Boundaries

Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equation

s ¼ Q
4pT

W
r2

4a t0 þ trð Þ
� �

þ
Xn
j¼1

X2
i¼1

W
q j
i

� �2
4a t0 þ trð Þ

" #
�W

r2

4atr

� �(

�
Xn
j¼1

X2
i¼1

W
q j
i

� �2
4atr

" #)
: ð11:27Þ

Graphic-Analytical Processing
The relationship in Table 11.9 has been derived with the use of a logarithmic
transformation of Eq. 11.27 for the difference of the drawdowns in two observation
wells. Here, the reduced distance is defined as:

r0 ¼ r
Yn
j¼1

q j
1q

j
2

 !1= 2nþ 1ð Þ
: ð11:28Þ

Basic analytical relationships (recovery is measured from the end of pumping)

Transient Flow Equation

sr ¼ Q
4pT

W
r2

4at0

� �
þ
Xn
j¼1

X2
i¼1

W
q j
i

� �2
4at0

" #
�W

r2

4a t0 þ trð Þ
� �

�
(

�
Xn
j¼1

X2
i¼1

W
q j
i

� �2
4a t0 þ trð Þ

" #
þW

r2

4atr

� �
þ
Xn
j¼1

X2
i¼1

W
q j
i

� �2
4atr

" #)
: ð11:29Þ

Graphic-Analytical Processing
Water-level recovery measurements represented in this form are not processed by
the graphic-analytical method in this work.

Table 11.9 Graphic-analytical parameter evaluation

Plot Method Relationship

s1 � s2ð Þ—lg tr Horizontal straight line
T ¼ 2nþ 1ð ÞQ

2p � A ln
r02
r01

The parameters are evaluated for a linear segment corresponding to the initial conditions of
water-level recovery
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11.1.1.6 Strip Aquifer: Constant-Head and Impermeable Boundaries

Basic analytical relationships (recovery is measured from the start of pumping)

Transient Flow Equation

s ¼ Q
4pT

W
r2

4a t0 þ trð Þ
� �

þ
Xn

j¼1;3...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2W
q j
i

� �2
4a t0 þ trð Þ

 !
þ

(

þ
Xn

j¼2;4...

�1ð Þj=2
X2
i¼1

W
q j
i

� �2
4a t0 þ trð Þ

 !
�W

r2

4atr

� �
�

�
Xn

j¼1;3...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2W
q j
i

� �2
4atr

 !
�
Xn

j¼2;4...

�1ð Þj=2
X2
i¼1

W
q j
i

� �2
4atr

 !)
:

ð11:30Þ

Quasi-Steady-State Flow Equation

s ¼ Q
4pT

ln
t0 þ tr
tr

¼ 0:183Q
T

lg
t0 þ tr
tr

: ð11:31Þ

Graphic-Analytical Processing
The relationships in Table 11.10 have been derived from Eqs. 11.31, 11.33, and
11.34

Table 11.10 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg
t0 þ tr
tr

Straight line
T ¼ 0:183Q

C

s—lg tr Horizontal straight linea
T ¼ Q

2p � A r0b, T ¼ Q
4p � A r0c

s1 � s2ð Þ—lg tr The same
T ¼ Q

2p � A ln
r01
r02

b, T ¼ Q
4p � A ln

r01
r02

c

aThe parameters are evaluated for a linear segment corresponding to the initial values of water-
level recovery
bFrom solution (Eq. 1.29), r0 is determined from Eq. 1.30
cFrom solution (Eq. 1.31), r0 is determined from Eq. 1.32
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Basic Analytical Relationships (recovery is measured from the end of pumping)

Transient Flow Equation

sr ¼ Q
4pT

W
r2

4at0

� �
þ
Xn

j¼1;3...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2W
q j
i

� �2
4at0

 !
þ
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þ
Xn

j¼2;4...

�1ð Þj=2
X2
i¼1

W
q j
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� �2
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 !
�W
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j¼1;3...

X2
i¼1

�1ð Þðjþ 2i�1Þ=2W
q j
i

� �2
4a t0 þ trð Þ

 !
�

�
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j¼2;4...

�1ð Þj=2
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i¼1

W
q j
i

� �2
4a t0 þ trð Þ

 !
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4atr

� �
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þ
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j¼1;3...
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i¼1

�1ð Þðjþ 2i�1Þ=2W
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� �2
4atr
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þ
Xn

j¼2;4...

�1ð Þj=2
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i¼1

W
q j
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� �2
4atr

 !)
:

ð11:32Þ

Steady-State Flow Equations
1. Based on the superposition principle:

smr ¼ Q
2pT

ln r0 ¼ 0:366Q
T

lg r0; ð11:33Þ

where the reduced distance r0 is determined by Eq. 1.30.
2. Based on Green’s function:

smr ¼ Q
4pT

ln r0 ¼ 0:183Q
T

lg r0; ð11:34Þ

where the reduced distance r0 is determined by Eq. 1.32.

Graphic-Analytical Processing
The relationships given in Table 11.11 have been derived from Eqs. 11.33 and
11.34.
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11.1.2 Unconfined Aquifer

The solutions describing water-level recovery are given for a fully penetrating well
located in an unconfined isotropic aquifer of infinite lateral extent (see Sect. 2.1),
and have been constructed based on the relationship (Eq. 2.22) for drawdown under
gravity-drainage conditions.

Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equation:

s 2m� sð Þ ¼ Q
2pk

W
r2

4a t0 þ trð Þ
� �

�W
r2

4atr

� �� �
; ð11:35Þ

where a ¼ km=Sy is the hydraulic diffusivity of the unconfined aquifer, m2/d; Sy is
the specific yield, dimensionless; k is the hydraulic conductivity, m/d; m is the
initial saturated thickness of an unconfined aquifer, m.

Quasi-Steady-State Flow Equation

s 2m� sð Þ ¼ Q
2pk

ln
t0 þ tr
tr

¼ 0:366Q
k

lg
t0 þ tr
tr

: ð11:36Þ

Graphic-Analytical Processing
The relationship in Table 11.12 has been derived from Eq. 11.36.

Table 11.11 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg tr Horizontal straight linea
T ¼ Q

2p � A r0b, T ¼ Q
4p � A r0c

smr—lg r0 Straight line
T ¼ 0:366Q

C

sr;1 � sr;2
� �

—lg tr Horizontal straight linea
T ¼ Q

2p � A ln
r01
r02

b, T ¼ Q
4p � A ln

r01
r02

c

aThe parameters are evaluated for a linear segment corresponding to the initial values of water-
level recovery
b, cSee note to Table 11.10

Table 11.12 Graphic-analytical parameter evaluation

Plot Method Relationship

s 2m� sð Þ—lg
t0 þ tr
tr

Straight line
k ¼ 0:366Q

C
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Basic Analytical Relationships (recovery is measured from the end of pumping)

Transient Flow Equation

sr 2m� srð Þ ¼ Q
2pk

W
r2

4at0

� �
�W

r2

4a t0 þ trð Þ
� �

þW
r2

4atr

� �� �
: ð11:37Þ

Quasi-Steady-State Flow Equation

sr 2m� srð Þ ¼ Q
2pk

ln
2:25at0

r2
¼ 0:366Q

T
lg
2:25at0

r2
; ð11:38Þ

where t0 is determined by Eq. 11.14.

Graphic-Analytical Processing
The relationships in Table 11.13 have been derived from Eq. 11.38.

11.2 A System of Pumping Wells with Constant
Discharge Rates

Solutions for water-level recovery after multi-well pumping test are considered. It is
assumed that all wells are shutdown simultaneously. The solutions are given for a
confined aquifer of infinite lateral extent (see Sect. 1.1.1).

In addition, the section gives quasi-steady flow equations for water-level
recovery after asynchronous starts of operation of test wells during pumping.
Transient relationships for this case can be derived from Eq. 10.6. The construction
of calculated curves describing level recovery after a multi-well asynchronous
perturbation is convenient to do on a plot s—lg t � t0ð Þ, similar to the recovery after
pumping with variable discharge rates (for details, see Sect. 11.3).

Table 11.13 Graphic-analytical parameter evaluation

Plot Method Relationship

sr 2m� srð Þ—lg t0 Straight line
k ¼ 0:366Q

C
, lg a ¼ A

C
þ lg

r2

2:25

sr 2m� srð Þ—lg
t0

r2
The same

k ¼ 0:366Q
C

, lg a ¼ A
C
� lg 2:25

sr 2m� srð Þ—lg r The same
k ¼ 0:732Q

C
, lg a ¼ 2

A
C
� lg 2:25 � t0ð Þ
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Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equations
At the synchronous start of operation of pumping wells:

s ¼ 1
4pT

XN
i¼1

Qi W
r2i

4a t0 þ trð Þ
� �

�W
r2i
4atr

� �� �
ð11:39Þ

or, after asynchronous start of the operation of pumping wells:

s ¼ 1
4pT

XN
i¼1

Qi W
r2i

4a t0 � ti þ trð Þ
� �

�W
r2i
4atr

� �� �
; ð11:40Þ

where N is the number of pumping wells; Qi is the discharge rate of the ith pumping
well, m3/d; ri is the distance from the observation well to the ith pumping well, m; ti
is the start time of operation of the ith pumping well, measured from the start of
pumping, d.

Quasi-Steady-State Flow Equation
After simultaneous starting of the operation of pumping wells and their simul-

taneous shutdown:

s ¼ Qt

4pT
ln
t0 þ tr
tr

; ð11:41Þ

Qt ¼
XN
i¼1

Qi: ð11:42Þ

For asynchronous starting of the operation of pumping wells and their simul-
taneous shutdown:

s ¼ 1
4pT

ln t0A; ð11:43Þ

ln t0A ¼
XN
i¼1

Qi ln
t0 � ti þ tr

tr
: ð11:44Þ

Graphic-Analytical Processing
The relationships given in Table 11.14 have been derived from Eqs. 11.41 and
11.43.
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Basic Analytical Relationships (recovery is measured from the end of pumping)

Transient Flow Equations
At the synchronous start of operation of pumping wells:

sr ¼ 1
4pT

XN
i¼1

Qi W
r2i
4at0

� �
�W

r2i
4a t0 þ trð Þ
� �

þW
r2i
4atr

� �� �
ð11:45Þ

or, after an asynchronous start of operation of pumping wells:

sr ¼ 1
4pT

XN
i¼1

Qi W
r2i

4a t0 � tið Þ
� �

�W
r2i

4a t0 � ti þ trð Þ
� �

þW
r2i
4atr

� �� �
: ð11:46Þ

Quasi-Steady-State Flow Equations
After simultaneous start of the operation of pumping wells and their simulta-

neous shutdown:

sr ¼ Qt

4pT
ln
2:25at0

r02
; ð11:47Þ

ln r0 ¼ 1
Qt

XN
i¼1

Qi ln ri; ð11:48Þ

where Qt is the sum of the discharge rates of all pumping wells (Eq. 11.42); t0 is
determined by Eq. 11.14.

Table 11.14 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg
t0 þ tr
tr

Straight line
T ¼ 0:183Qt

C

s1 � s2ð Þ—lg tr Horizontal straight linea
T ¼ Qt

2p � A ln
r02
r01

s—lg t0A Straight lineb
T ¼ 0:183

C
aThe parameters are determined for a linear segment corresponding to the initial values of water-
level recovery
bBy the data of level recovery after an asynchronous perturbation
The reduced distances (r01; r

0
2) are determined by Eq. 11.48
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For asynchronous start of the operation of pumping wells and their simultaneous
shutdown

sr ¼ Qt

4pT
ln
2:25at0A

r02
; ð11:49Þ

ln t0A ¼ 1
Qt

XN
i¼1

Qi ln
t0 � tið Þtr

t0 � ti þ tr
; ð11:50Þ

where r0 is determined from Eq. 11.48.

Graphic-Analytical Processing
The relationships given in Table 11.15, have been derived from Eqs. 11.47 and
11.49.

Table 11.15 Graphic-analytical parameter evaluation

Plot Method Relationship

sr—lg t0 Straight line
T ¼ 0:183Qt

C
, lg a ¼ A

C
þ lg

r02

2:25

sr—lg r0 The same
T ¼ 0:366Qt

C
, lg a ¼ 2

A
C
� lgð2:25 � t0Þ

sr—lg
t0

r02
The same

T ¼ 0:183Qt

C
, lg a ¼ A

C
� lgð2:25Þ

sr;1 � sr;2
� �

—lg tr Horizontal straight linea
T ¼ Qt

2p � A ln
r02
r01

sr—lg t0A Straight lineb
T ¼ 0:183Qt

C
, lg a ¼ A

C
þ lg

r02

2:25

sr—lg r0 The same
T ¼ 0:366Qt

C
, lg a ¼ 2

A
C
� lgð2:25 � t0AÞ

sr—lg
t0A
r02

The same
T ¼ 0:183Qt

C
, lg a ¼ A

C
� lgð2:25Þ

aThe parameters are determined for a linear segment corresponding to the final values of
water-level recovery; on the plot of the difference between drawdown values, the formula for
determining the transmissivity does not depend on whether the perturbation is synchronous
bThe parameters are determined from level-recovery data after asynchronous perturbation
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11.3 Variable Discharge Rate

A confined aquifer of infinite lateral extent (see Sect. 1.1.1) is used in this section to
demonstrate the potentialities of and the problems in the processing of
level-recovery data in an observation well after pumping from one or several wells
with varying discharge rates.

Basic Analytical Relationships (recovery is measured from the start of pumping)

Transient Flow Equations
Analytical transient relationships for processing the data of pumping tests with

variable discharge rates are described by Eqs. 10.33 and 10.37. To evaluate water-
level recovery in such an experiment, one more step with a zero discharge is added.
The hydraulic parameters are evaluated using a time–drawdown plot for both
pumping and recovery phases based on the matching method (see Sect. 12.3).

Recovery data on the time–drawdown plot look uninformative (see Fig. 11.2).
Therefore, it is recommended to process this segment of the curve with the use of a
plot in coordinates s� lg t � t0ð Þ, which corresponds to a plot constructed by the
measurements of level recovery alone s� lg tr, where tr ¼ t � t0 is the time from
the start of the test less the duration of pumping (see Fig. 11.1a).

Quasi-Steady-State Flow Equations
Recovery after pumping from a single well is:

s ¼ 1
4pT

Xn1
j¼1

Qj
1 � Qj�1

1

� 	
ln t � t j1
� �� Qn1

1

4pT
ln tr ð11:51Þ

and after a multi-well pumping:

s ¼ 1
4pT

XN
i¼1

Xni
j¼1

Qj
i � Qj�1

i

� 	
ln t � t ji
� �" #

� 1
4pT

XN
i¼1

Qni
i ln tr; ð11:52Þ

where ni is the number of steps of discharge changes in the ith pumping well before
the start of level recovery; Qni

i is the discharge rate at the last step in the ith pumping
well before the end of pumping, m3/day; t ji is the time of the start of the jth step in
the ith pumping well, d.

Graphic-Analytical Processing
The relationships given in Table 11.16, have been derived from Eqs. 11.51 and
11.52.

Table 11.16 Graphic-analytical parameter evaluation

Plot Method Relationship

s—lg t � t0ð Þ Straight line
T ¼ 0:183

C

XN
i¼1

Qni
i
a; T ¼ 0:183Qn1

1

C
b

aBased on data on level recovery after multi-well pumping
bBased on data on level recovery after pumping from a single pumping well
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Part III
Solution of Hydrogeological

Problems Using ANSDIMAT

The third, final part of the book contains algorithms for evaluating hydraulic
characteristics by analytical and graphical methods, supplemented by a brief
characteristic of ANSDIMAT software, which provides a practical implementation
of aquifer-test data processing. Basic groundwater flow equations (see Parts I and
II) are used to construct drawdown plots for typical cases. The plots for various
types of both aquifers and test scenarios are presented. The effect of hydraulic
characteristics and boundary conditions on the behavior of level-variation plots is
demonstrated.

The third part describes options provided by the ANSDIMAT computer pro-
gram. In particular, an alternative approach to well-system simulation is considered,
and solutions of some practical engineering-hydrogeological problems are proposed
including the assessment of aquifer characteristics by data on groundwater-level
monitoring and the evaluation of water inflow into open pits.



Chapter 12
Aquifer-Test Analytical Methods

The methods used to analyze aquifer tests can be conventionally divided into
graphical methods and matching methods. Each conceptual model requires special
interpretation of the approaches and procedures for choosing treatment methods for
optimal and prompt evaluation of the required characteristics. The choice of the
method largely depends on the type of flow regime within the analyzed interval of
the observation curve, which may be transient, quasi-steady-state, or steady-state.
Thus, graphical methods can be applied to quasi-steady-state flow; graphical
methods for distance–drawdown analysis can be used for steady-state flow; and
data matching and type-curve methods for transient flow.

The duration of the pumping test in complex aquifer systems can determine the
choice of the conceptual model. A good and, sometimes the only, method for
treating the initial segments of observation curves is the use of solutions for sim-
plified conditions. For example, aquifers bounded in the horizontal plane or
thickness can be regarded as analogous models with unbounded flow and
multi-aquifer systems can be analyzed as systems with a lower number of layers.
When the test time is sufficiently long, additional schematization with the use of
averaged or reduced aquifer characteristics can be applied.

Processing methods (Sects. 12.1–12.3) are discussed mostly as applied to a
constant-discharge pumping test in a homogeneous, isotropic, confined aquifer (see
Sect. 1.1.1).

The last section (Sect. 12.4) gives a set of drawdown plots for different types of
aquifers.

12.1 Graphical Methods

Graphical methods are based on transformations of original analytical relationships
and the use of drawdown plots. Such methods are most rapid, informative, and
convenient for evaluating the hydraulic characteristics.

© Springer International Publishing Switzerland 2017
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Most functions used to describe groundwater flow during a definite time period—
this commonly refers to quasi-steady-state flow (see Fig. 12.1)—are reduced to
simple linear equations. However, their accuracy remains sufficiently high. This
approach enables that averaged parameters are obtained, given the drawdown in one
or several observation wells for a chosen time interval within the test period.
Graphical methods are applied to the conceptual models that have the
best-developed solutions.

12.1.1 Straight-Line Method

The straight-line method is based on the approximation of the initial analytical
relationship by a linear equation (Theis 1935; Jacob 1946; Cooper and Jacob 1946).

A logarithmic approximation of the Theis solution (Eq. 1.1) with the passage to
decimal logarithm yields the following relationship for drawdown after a
quasi-steady-state regime has been reached:

s ¼ 0:183Q
T

lg
2:25Tt
Sr2

¼ 0:183Q
T

lg
2:25at
r2

; ð12:1Þ

where s is the drawdown in an observation well, m; Q is the discharge rate, m3/d;
T ¼ km is the transmissivity, m2/d; k; m are the hydraulic conductivity (m/d) and
thickness (m) of the aquifer; S is the storage coefficient, dimensionless; a ¼ T=S is
the hydraulic diffusivity, m2/d; r is the radial distance from the pumping to the
observation well, m; t is the time elapsed from the start of pumping, d.

The linear Eq. 12.1 follows from the property of the well-function for small
values of its arguments (see Appendix 7.1):

W
r2

4at

� �
� ln

2:25at
r2

for
r2

4at
� 0:05; ð12:2Þ

where W �ð Þ is a well-function.
Representing Eq. 12.1 in different forms (Cooper and Jacob 1946):

s ¼ 0:183Q
T

lg tþ lg
2:25a
r2

� �
; ð12:3Þ

s ¼ 0:366Q
T

� lg rþ lg
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2:25at

p� �
; ð12:4Þ

s ¼ 0:183Q
T

lg
t
r2

þ lg 2:25að Þ
� �

; ð12:5Þ

we obtain three straight-line-based methods for determining the hydraulic charac-
teristics, corresponding to the three types of plots involved, i.e., time–drawdown
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plot, distance–drawdown plot, and time–distance–drawdown plot. The time–
drawdown plot (Fig. 12.1a) uses the drawdown measured in a single observation
well; the distance–drawdown plot (Fig. 12.1b) is based on the drawdown measured
in several observation wells at a specified moment; and the time–distance–draw-
down plot (Fig. 12.1c) uses the drawdown measured in several observation wells.

The slope of the straight line (a) and the intercept on the ordinate (A) on a plot
are used to evaluate the transmissivity (T) and hydraulic diffusivity (a) of the
aquifer.

The methods for evaluating hydraulic characteristics by the straight-line method
for different types of plots is summarized in Table 12.1.

Table 12.1 shows independent evaluation of the transmissivity and hydraulic
diffusivity. Given these characteristics, the aquifer storage coefficient can be readily
calculated: S ¼ T=a. In addition, the intercept on the abscissa (Fig. 12.1) can be
used to determine the storage coefficient (or hydraulic diffusivity) by formulas
given in Table 12.2.

Fig. 12.1 Parameter evaluation by straight-line method on the a time–drawdown, b distance–
drawdown, and c time–distance–drawdown plots. The triangles and circles indicate the measured
data
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12.1.2 Horizontal Straight-Line Method

Consider a system of equations for the drawdown in two observation wells with
Eq. 12.1 used for quasi-steady-state period:

s1 ¼ 0:183Q
T

lg
2:25at
r21

s2 ¼ 0:183Q
T

lg
2:25at
r22

8>><
>>: ) s1 � s2 ¼ 0:366Q

T
lg
r2
r1
; ð12:6Þ

where s1; s2 are drawdown values in the first and second observation wells, m;
r1; r2 are the distances from the first and second observation wells to the pumping
well, m.

Equation 12.6 shows that the drawdown difference between two wells does not
depend on time once quasi-steady-state flow regime has been reached. Aquifer
transmissivity can be readily evaluated by the intercept A (Fig. 12.2a) of the straight
line parallel to the abscissa (Sindalovskiy 2014)

Table 12.1 Parameter evaluation by straight-line method

Time–drawdown plot
(Eq. 12.3, Fig. 12.1a)

Distance–drawdown plot
(Eq. 12.4, Fig. 12.1b)

Time–distance–drawdown plot
(Eq. 12.5, Fig. 12.1c)

s—lg t s—lg r s—lg
t
r2

s ¼ C lg tþA s ¼ �C lg rþA s ¼ C lg
t
r2

þA

C ¼ s2 � s1
lg t2 � lg t1

C ¼ s1 � s2
lg r2 � lg r1

C ¼ s2 � s1
lgðt=r2Þ2 � lgðt=r2Þ1

T ¼ 0:183Q
C

T ¼ 0:366Q
C

T ¼ 0:183Q
C

lg a ¼ A
C

þ lg
r2

2:25
lg a ¼ 2

A
C
� lg 2:25tð Þ lg a ¼ A

C
� lg 2:25

C ¼ tan a is the slope of the straight line; A is the intercept on the ordinate

Table 12.2 Parameter evaluation by the straight-line method

Plot s—lg t s—lg r s—lg t=r2

Storage coefficient, dimensionless
S ¼ 2:25Ttx

r2
S ¼ 2:25Tt

r2x
S ¼ 2:25T

t
r2

� �
x

Hydraulic diffusivity, m2/d
a ¼ r2

2:25tx
a ¼ r2x

2:25t
a ¼ 1

2:25ðt=r2Þx
tx, rx, and ðt=r2Þx are the intercepts of the straight line on the abscissa of appropriate plots (see
Fig. 12.1)
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T ¼ 0:366Q
A

lg
r2
r1
: ð12:7Þ

The same method is used for aquifers with steady-state flow (Fig. 12.2b), for
example, in the case of pumping near a constant-head boundary (see Sect. 1.2.1). In
such case, the transmissivity can be evaluated by a single observation well for the
period of level stabilization (see, e.g., the formula for s—lg t plot in Table 1.3).
Note that the horizontal straight line is also used for the drawdown difference in two
wells in the period of steady-state flow (see parameter evaluation on s1 � s2ð Þ—lg t
plot in Table 1.3).

12.1.3 Type Curve Method

The type curve method is based on taking the logarithm of both the original
analytical relationship and an argument of a special function, which enters this
relationship (Ferris et al. 1962).

Let us consider a system of equations [for the case of solution (Eq. 1.3)]:

s ¼ Q
4p T

W uð Þ

u ¼ r2

4at

8><
>: )

lg s = lg
Q

4p T
þ lgW(uÞ

lg
1
u
� lg

t
r2

¼ lgð4aÞ

8><
>:

)
lg s� lgW(uÞ = lg

Q
4pT

¼ D

lg
1
u
� lg

t
r2

¼ lgð4aÞ ¼ E;

8><
>: ð12:8Þ

where D ¼ lg
Q

4pT
, E ¼ lg 4að Þ are the shifts of the curve of the measured values

and the type curve along the vertical and horizontal, respectively.

Fig. 12.2 Transmissivity evaluation by the method of horizontal straight line based on time–
drawdown data. The plots are constructed for a the drawdown difference between two wells and
b the drawdown in a single well located near a constant-head boundary
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The system (Eq. 12.8) shows that it is convenient to plot the measured values in
coordinates lg s—lg t=r2ð Þ and the type curve in coordinates lgW uð Þ—lg 1=uð Þ. In
this case, the coordinate axes of the factual and type curves will be shifted by
D along the vertical and by E along the horizontal (Fig. 12.3). The plot of the
factual curve here is a time–distance–drawdown plot. For the conceptual models
that ignore the effect of boundaries and leakage, the drawdown plots for different
observation wells, ideally, should coincide.

Different representations of the second equation of the system (Eq. 12.8) provide
different possible uses of the type curve. For a time–drawdown plot, it can be
written as:

u ¼ r2

4at
) lg

1
u
¼ lg tþ lg

4a
r2

) lg
1
u
� lg t ¼ lg

4a
r2

¼ E; ð12:9Þ

with which the plot of the factual curve will have the form lg s—lg t, the plot of the
type curve will be lgW uð Þ—lg 1=uð Þ, and E ¼ lg 4a=r2ð Þ. In this case, the type
curve is associated with a chosen observation well. For the distance–drawdown
plot:

u ¼ r2

4at
) lg

ffiffiffi
u

p ¼ lg r � lg
ffiffiffiffiffiffiffi
4at

p
) lg r � lg

ffiffiffi
u

p ¼ lg
ffiffiffiffiffiffiffi
4at

p
¼ E; ð12:10Þ

and then the factual curve is plotted in coordinates lg s—lg r, the type curve is
plotted in coordinates lgW uð Þ—lg

ffiffiffi
u

p
, and E ¼ lg

ffiffiffiffiffiffiffi
4at

p
.

In these two examples (Eqs. 12.9 and 12.10), D ¼ lg
Q

4p T
.

All possible combinations of plotting the type and factual curves and the for-
mulas for evaluating the hydraulic parameters are summarized in Table 12.3.

Fig. 12.3 Parameter
evaluation by type curve on a
log–log time–distance–
drawdown plot. The solid
curve is the type curve;
triangles and circles indicate
measured data. The dashed
lines are the coordinate axes
of the type curve
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12.2 Method of Bisecting Line

The method of bisecting line is based on a graphical determination of the agreement
between the factual and estimated values at a correct choice of the hydraulic
parameter (Sindalovskiy 2006). This is made using a plotted ratio of the actual
drawdown in two wells versus the ratio of the calculated drawdown in the same
wells (Fig. 12.4).

When data on the drawdown in two observation wells are available, we obtain a
system of equations in the first (s1) and second (s2) wells (for the case of Eq. 1.3):

s1 ¼ Q
4pT

W
r21
4at

� �

s2 ¼ Q
4pT

W
r22
4at

� �
8>>><
>>>:

) s1
s2

¼
W

r21
4at

� �

W
r22
4at

� � ) s1
s2

¼ W u1ð Þ
W u2ð Þ ; ð12:11Þ

Fig. 12.4 An example of parameter evaluation by the method of bisecting line. a Time–
drawdown plot for two observation wells; b a plot for the method of bisecting line based on the
drawdown in these wells. The dots indicate measured data

Table 12.3 Plotting type and factual curves

Processing method Coordinates of the curve Shift of axe

Factual Type Vertical Horizontal

Time–distance–drawdown lg s—lg
t
r2 lgW uð Þ—lg

1
u

D ¼ lg
Q
4pT

E ¼ lg 4að Þ

Time–drawdown lg s—lg t
lgW uð Þ—lg

1
u

E ¼ lg
4a
r2

Distance–drawdown lg s—lg r lgW uð Þ—lg
ffiffiffi
u

p
E ¼ lg

ffiffiffiffiffiffiffi
4at

p
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where u1; u2 are arguments of the function for the first and second observation
wells.

The choice of hydraulic diffusivity is based on the method of bisecting line on

the plot
s1
s2

—
W u1ð Þ
W u2ð Þ. The plot constructed in these coordinates is a straight line

passing through the origin at an angle of 45° (Fig. 12.4b). This will be true with the
correctly chosen value of hydraulic diffusivity. Otherwise, points on the plot will
deviate from the linear segment. An advantage of the method is that the estimate of
the hydraulic diffusivity does not depend on aquifer transmissivity and
pumping-well discharge.

The method of bisecting line is a graphical analog of the point method for
parameter evaluation based on the drawdown ratio in two observation wells.

In the cases where a single observation well is available with measurement data
for periods of pumping and recovery, the system of equations (Eq. 12.11) can be
replaced by:

s0 ¼ Q
4p T

W
r

4at0

� �

s ¼ Q
4pT

W
r

4a t0 þ trð Þ
� �

�W
r

4atr

� �� � ) s0
s
¼

W
r

4at0

� �

W
r

4aðt0 þ trÞ �W
r

4atr

� �� �
8>><
>>: ;

ð12:12Þ

where s0 is the drawdown in an observation well at the moment when pumping was
stopped, m; t0 is pumping duration, d; tr is the time elapsed from the start of
recovery, d.

In the latter case, the plot is constructed in coordinates
s0
s
—

W uð Þ
W0 uð Þ, where W

0 uð Þ
is the expression in square brackets in the second equation of the system
(Eq. 12.12). In this case, a plot in log–log coordinates is more demonstrative.

A variant of such an approach to solving the problem is based on a represen-
tation of the Theis solution (Eq. 1.3) as a linear equation (Shtengelov 1994):

y ¼ Cx; where y ¼ s; C ¼ Q
4pT

; x ¼ W
r2

4at

� �
:

If we construct a plot in coordinates s—W uð Þ, where u ¼ r2=ð4atÞ, then the
correctly specified hydraulic diffusivity will give a straight line passing from the
origin (Fig. 12.5).

The slope (a) of the straight line is used to determine aquifer transmissivity:
T ¼ 0:08Q=C, where C ¼ tan a. Ideally, all points from the first measurement
series must fall on a single straight line. The construction of a plot with a hydraulic
diffusivity that disagrees with the properties of the aquifer under consideration will
lead to a deformation of the initial part of the curve and shift the linear segment
relative to the origin; however, the slope will remain unchanged.
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12.3 Matching Methods

Matching methods involve the solving of a direct or inverse problem for the search
for the hydraulic parameters of an aquifer. A criterion of solution correctness is the
visual agreement between the factual and calculated curves.

12.3.1 Direct Method: Manual Trial and Error

In this method, the direct groundwater flow problem is solved. The required
coefficients are chosen here by visual comparison of the plot of factual water-level
changes and a theoretical curve (Fig. 12.6), calculated by an appropriate relation-
ships for specified technical characteristics of the test (discharge rate, the distance to
the pumping well, time, etc.). The direct method makes it possible to promptly and
vividly analyze the sensitivity to various hydraulic and engineering parameters and
to compare results obtained with different conceptual models. The manual trial and

Fig. 12.6 Parameter
evaluation by curve fitting on
a time–drawdown plot. The
solid curve shows calculation
results, the dots are measured
data

Fig. 12.5 An example of the
use of the straight-line method
in s—W uð Þ plot. The black
dots are for a correctly
specified hydraulic diffusivity,
the hollow dots are for
incorrectly estimated
hydraulic diffusivity
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error becomes an indispensable method for data processing in aquifer tests carried
out under the conditions where there are no acceptable graphical methods: complex
conditions, multi-well pumping with variable discharge rate, slug tests, etc.

When using such method, one should take into account that in some conceptual
models, where fitting involves more than two parameters, the result of estimation
may be not unique. This is primarily true for aquifers in which anisotropy is taken
into account (see Sects. 1.2 and 1.3) and for leaky aquifers (see Chap. 3).

In addition to evaluating the hydraulic characteristics, the fitting method can
predict water-level variation over time at any point in the aquifer (Fig. 12.6) or over
space at any moment (Fig. 12.7a). This is of particular importance in the case of
likely changes in pumping-well discharge rates, when there are no simple analytical
solutions available to promptly evaluate the effect of test perturbation. Parameter
fitting for the case of time–distance–drawdown analysis, when a plot contains
curves for several observation wells, provides an estimate of the degree of
heterogeneity or anisotropy of the analyzed area.

A specific feature of the manual trial-and-error approach for the conditions
where the principle of superposition is applied (bounded aquifers or multi-well
pumping tests) is that the drawdown at a point in an aquifer, reflected on the plot,
depends not only on the distance to a single pumping well, but also on the distances
to the flow boundary and/or other pumping wells. Therefore, distance–drawdown
analysis can be carried out only for discrete points, in which observation wells are
located, and for specified moments in time (Fig. 12.7b).

A variety of manual trial-and-error method is the choice of parameters using
water-level measurement in two observation wells. In this case, time plots are
constructed for drawdown ratios or differences (Fig. 12.8). The methods of draw-
down ratios and differences in this form are analogous to point methods, which
were earlier in wide use, with the difference that the researcher obtains parameters
averaged over the entire chosen time interval, rather than for one or two mea-
surements (Sindalovskiy 2014).

Fig. 12.7 a Matching method on a distance–drawdown-plot and b one-dimensional plot,
constructed by drawdown values in observation wells (well names are given on the abscissa for a
specified moment). The full curve shows calculation results, and the dots are measured values

236 12 Aquifer-Test Analytical Methods

http://dx.doi.org/10.1007/978-3-319-43409-4_1
http://dx.doi.org/10.1007/978-3-319-43409-4_1
http://dx.doi.org/10.1007/978-3-319-43409-4_3


Drawdown-ratio method. A time–drawdown plot is used to construct a plot of
the drawdown ratio for two chosen observation wells. The process of choosing
parameters is similar to that in the manual trial-and-error method. An advantage of
this approach over the previous method is that, in the case of a pumping test with a
single constant-discharge well, the original equation transforms into an equation
with one unknown (normally, hydraulic diffusivity). Some variables (e.g., discharge
rate and transmissivity) are eliminated from the trial-and-error procedure and only
one parameter (in some cases, two) is to be determined:

s1
s2

¼ W
r21
4at

� �	
W

r22
4at

� �
: ð12:13Þ

Equation 12.13 is written for a pumping test in a confined aquifer of infinite
lateral extent (see Sect. 1.1.1). This equation is used to evaluate the hydraulic
diffusivity. For other types of aquifer tests or other conditions (e.g., aquifer type, the
presence of boundary conditions, etc.), this can be another parameter. For example,
for a leaky aquifer (see Sect. 3.1.1), an equation written for steady-state-flow period
depends only on the leakage factor:

s1
s2

¼ K0
r1
B

� �
K0

r2
B

� �
:

.
ð12:14Þ

In the case of aquifers bounded in the horizontal plane, the drawdown ratio in the
steady-state-flow period may depend only on the positions of the wells relative to
the boundaries and may not depend on any hydraulic parameters. For example, in
the case of a semi-infinite aquifer (constant-head boundary) (see Sect. 1.2.2.1):

Fig. 12.8 An example of plots constructed by drawdown ratio and drawdown difference in two
observation wells. a Time–drawdown plot for two observation wells; b drawdown ratio and
drawdown difference plots based on the values given in the left plot
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s1
s2

¼ lg
q1
r1

� �	
lg

q2
r2

� �
; ð12:15Þ

where q1; q2 are the distances from the first and second observation wells to the
image well, respectively, m.

For a constant-drawdown pumping test (see Chap. 8), the drawdown in the
pumping well is excluded from the evaluation.

The plot s1=s2—lg t is more convenient to construct for observation wells lying
at distances r1 [ r2, i.e., s2 is to be the drawdown in the observation point nearest to
the pumping well.

Drawdown-difference method. This method is used mostly for graphical pro-
cessing (see Sect. 12.1.2). However, it can be also used for manual trial-and-error
parameter choice:

s1 � s2 ¼ Q
4p T

W
r21
4at

� �
�W

r22
4at

� �� �
� Q

2p T
ln
r2
r1
: ð12:16Þ

As seen from Eq. 12.16, the drawdown for a transient flow period depends on
the transmissivity and hydraulic diffusivity, while, in the case of quasi-steady-state
flow, it depends on the transmissivity alone. The plot for the drawdown-difference
method is constructed in coordinates s1 � s2ð Þ—lg t, where s1 is to be the draw-
down in the observation point nearest to the pumping well (i.e., r1\r2).

12.3.2 Inverse Method for Sensitivity Analysis

Automatic mode for parameter evaluations is based on minimizing the differences
between the factual (input) data and the values calculated by one of the basic
analytical relationships (see Chaps. 1–11). The input data are the groundwater-level
measurements in one or several observation wells.

In the case of relatively simple groundwater flow equations, the inverse problem
can be solved with the use of the least-squares method. When flow processes are
described by complex functions, special programs, such as UCODE_2005 (Poeter
et al. 2005) can be used. Guides for the use of such codes are given in Appendix 6.

The procedure of application of the least-squares method can be considered as
applied to an aquifer test in an infinite confined aquifer (see Sect. 1.1.1).

Suppose that the drawdown si in an observation well at a distance r from the
pumping well at moment ti can be determined by the Theis solution (Eq. 1.3):

si ¼ ckW
r2

4ati

� �
; ð12:17Þ
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where ck ¼ Q= 4pTð Þ is a constant, depending on the discharge rate of the pumping
well and aquifer transmissivity.

Consider the sum of squares of differences between the measured and calculated
values at some unknown values of parameters a and ck to be determined:

d ¼
Xn
i¼1

si � ckW
r2

4ati

� �� �2
¼ f a; ckð Þ; ð12:18Þ

where n is the number of measurements involved in inverse-problem solution.
The objective is to find the values of parameters a and ck to minimize the

difference (Eq. 12.18). Differentiating function f a; ckð Þ by each unknown parame-
ter, and equating the partial derivatives to zero, we obtain a system of two equations
with two unknowns a and ck:

@f
@a

¼
Xn
i¼1

si � ckW
r2

4ati

� �� �2( )0

a

¼ 0;

@f
@ck

¼
Xn
i¼1

si � ckW
r2

4ati

� �� �2( )0

ck

¼ 0:

8>>>>><
>>>>>:

ð12:19Þ

Now, we calculate the derivatives:

@f
@a

¼ 2
Xn
i¼1

si � ckW uið Þ½ � �ckð Þ @W uið Þ
@a

¼ 0;

@f
@ck

¼ 2
Xn
i¼1

si � ckW uið Þ½ � �W uið Þ½ � ¼ 0;

8>>><
>>>:

)

Xn
i¼1

si � ckW(uiÞ½ � e
�ui

a
¼ 0;

Xn
i¼1

si � ckW(uiÞ½ �W(uiÞ ¼ 0;

8>>><
>>>:

ð12:20Þ

where ui ¼ r2

4ati
.

Finally, the system of equations for calculating the hydraulic characteristics
becomes:

Xn
i¼1

si
1
a
exp �uið Þ

� �
�

Xn
i¼1

siW uið Þ½ �
Xn
i¼1

W uið Þ½ � 2
Xn
i¼1

W uið Þ 1
a
exp �uið Þ


 �
¼ 0;

ck ¼

Xn
i¼1

siW uið Þ½ �
Xn
i¼1

W uið Þ½ � 2
;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð12:21Þ
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where the hydraulic diffusivity a is found from the first equation of the system
(Eq. 12.21), for example, by bracketing technique or iterations, and the parameter
ck (and hence, aquifer transmissivity T) can be directly calculated from the second
equation of the system (Eq. 12.21). The hydraulic diffusivity can be evaluated to
any required accuracy.

In the general form, the system of equations for an arbitrary conceptual model
with any number of pumping and observation wells and step-wise variation of
discharge rate in each pumping well can be written as:

XN0

m¼1

Xn
i¼1

smi R
0 � ck

XN0

m¼1

Xn
i¼1

R� R0 ¼ 0;

XN0

m¼1

Xn
i¼1

smi R� ck
XN0

m¼1

Xn
i¼1

R2 ¼ 0;

8>>>><
>>>>:

ð12:22Þ

where R ¼
XNþM

j¼1

Xnj

k¼1
DQk

j F a; tki ; r
m
j

� �
; R0 ¼

XNþM

j¼1

Xnj

k¼1
DQk

j

@F a; tki ; r
m
j

� �
@a

;

ck is a constant, which depends on the chosen model (normally, it involves the
transmissivity or the hydraulic conductivity of the aquifer); i ¼ 1; 2; 3; . . .; n is
measurement number; j ¼ 1; 2; 3; . . .; NþM are the numbers of pumping wells
(both real and image); k ¼ 1; 2; 3; . . .; nj is the number of a step in the discharge

rate in the jth pumping well (either real or image); F a; tki ; r
m
j

� �
is a function

describing the conceptual model; smi is the value of the ith factual measurement in
the mth observation well, m; M is the number of image wells for bounded aquifers
(for infinite aquifers M ¼ 0); m ¼ 1; 2; 3; . . .; N0 is the number of an observation
well (N0 is the number of the observation wells used in parameter estimation); N is
the number of pumping wells; n is the number of factual measurements used in
parameter estimation (this number may be different in different observation wells);
nj is the number of discharge steps in the jth real or image pumping well (in each
such well, it can be different); DQk

j is the kth discharge change in the jth pumping
(real or image) well, m3/d; rmj is the distance from the mth observation well to the

jth pumping (real or image) well, m; tki is the moment of the ith measurement to the
beginning of the kth step (discharge change), d.

As with the system of equations (Eq. 12.21), the first part of Eq. 12.22 is solved
by approximate calculation of the root. This root is used to evaluate the hydraulic
diffusivity of the aquifer to any required degree of accuracy. The obtained value is
substituted into the second equation of the system (Eq. 12.22), whence the trans-
missivity or hydraulic conductivity can be evaluated by direct calculation:

ck ¼
XN0

m¼1

Xn
i¼1

smi R

,XN0

m¼1

Xn
i¼1

R2: ð12:23Þ
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Before starting the procedure of automated matching, it is reasonable to exclude
the measurements that are knowingly unacceptable for some reason (technical
factors or researcher’s mistakes). Otherwise, the final results may be strongly dis-
torted. It is recommended to use the obtained parameters to construct a time–
drawdown, distance–drawdown, or distance–drawdown–time curve and compare
visually the factual and theoretical data.

The least-squares method is convenient for parameter evaluation by the
straight-line method (see Sect. 12.1.1) for automated linear approximation of fac-
tual measurements corresponding to a quasi-steady-state period. In this case, the
algorithm for solving the inverse problem is similar to the algorithm based on
Eqs. 12.17–12.21, where Eq. 12.17 is replaced by

si ¼ ck lg ti þ lg
2:25a
r2

� �
: ð12:24Þ

Equation 12.24 is given for plot s—lg t. Similar equalities can be readily written for
other plots to which the straight-line method can be applied.

12.4 Diagnostic Curve for Aquifer Tests

The plot of data obtained in the course of an aquifer test depends on aquifer type,
the presence of boundary conditions, and the type of test (pumping test, recovery
test, slug test, etc.). An expert can use the appearance of the plot to derive some
conclusions regarding the conditions of the test. The model curves given in this
section have been constructed with the use of the ANSDIMAT software package
(Sindalovskiy 2014).

12.4.1 Confined Aquifer

12.4.1.1 Aquifer of Infinite Lateral Extent

Water-level drawdown in an observation well located in a confined aquifer of infinite
areal extent (see Sect. 1.1) can be described by the Theis solution (Eq. 1.1). The
time–drawdown plot s—lg t (Fig. 12.9) contains a linear segment corresponding to a
quasi-steady-state period. The beginning of the period depends on the distance to the
pumping well and the hydraulic diffusivity of the aquifer (Eq. A4.16).

The hydraulic parameters of an aquifer have an effect on the behavior of the
drawdown curve: the transmissivity is associated with its slope (Fig. 12.10a, b),
and the storage characteristics (storage coefficient or hydraulic diffusivity) shift the
curve to the left or to the right (Fig. 12.10c).
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The initial segment of the drawdown plot (Fig. 12.11) is largely dependent on
the wellbore storage and skin. The further is the observation well from the pumping
well, the lesser the manifestation of those effects. The moment after which the effect
of storage on the drawdown can be neglected depends on the aquifer transmissivity
and the casing radius of the pumping well (Eq. A2.3).

The plots given in Fig. 12.11 have been constructed with the use of Moench
solutions (Eqs. 1.4 and 1.5). They show that the wellbore skin has different effect
on the drawdown in the pumping and observation wells. In the observation well, the
wellbore skin causes a time lag in level drop with subsequent alignment with the
Theis curve (Fig. 12.11a). The drawdown curve in the pumping well, after a short
delay, passes above the Theis curve (Fig. 12.11b).

Observation well storage has a lesser effect on the test result, though this effect
can be appreciable in large-diameter observation wells (Fig. 12.11c).

12.4.1.2 Aquifer Bounded in the Horizontal Plane

This section considers typical plots for confined semi-infinite and strip aquifers (see
Sects. 1.1.2 and 1.1.3).

For semi-infinite aquifers, the pattern of the drawdown plot depends on the type
of boundary condition. In pumping tests near a constant-head boundary, the curve
reaches a steady state after a transient flow period (Fig. 12.12a), whose duration
depends on aquifer hydraulic diffusivity and the distances from the pumping and
observation wells to the boundary (see Eq. A4.17). In the presence of an imper-
meable boundary, the drawdown plot (Fig. 12.12b) is similar to the drawdown plot
in an aquifer of infinite lateral extent (see Fig. 12.9), with the difference that the
slope of the plot is twice as large as in the former case and the quasi-steady-state
period sets in later. The onset time of the quasi-steady-state period is evaluated in
this case with the use of the same formula (see Eq. A4.17).

Fig. 12.9 Time–drawdown
plot for a confined aquifer
of infinite lateral extent
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In a strip aquifer, the steady-state period forms only if at least one of the
boundaries is of the constant-head type (Fig. 12.13).

In the case of two parallel impermeable boundaries, the drawdown plot in
coordinates s—lg t does not contain a linear segment (Fig. 12.14). However, a plot
in coordinates s—

ffiffi
t

p
contains a strictly linear segment, enabling the use of this plot

to evaluate hydraulic characteristics (see Table 1.6).

Fig. 12.10 The effect of hydraulic parameters on the drawdown in a confined aquifer:
a transmissivity (T2\T1\T3) at constant storage coefficient; b transmissivity (T2\T1\T3) at
constant hydraulic diffusivity; c storage coefficient (S2\S1\S3) [or hydraulic diffusivity
(a3\a1\a2)] at constant transmissivity. The numbers at the curves (1, 2, 3) correspond to the
subscripts at hydraulic characteristics
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12.4.1.3 Partially Penetrating Wells

Partially penetrating wells (see Sects. 1.2 and 1.3) can be used to determine the
vertical anisotropy of an aquifer. The closer the observation well to the pumping
well, the greater the effect of its partial penetration on the drawdown. At distances
greater than aquifer thickness, the partial penetration of wells and the vertical
component of the hydraulic conductivity have but little effect on the drawdown.

A partially penetrating well in the form of a point source (see Sect. 1.2) is rarely
used in practical calculations because it generally implies an aquifer infinite in
thickness. In the case of point source, the plot of the drawdown comes to

Fig. 12.11 The effect of wellbore storage and skin on the drawdown in a observation and
b pumping wells. The curves show (1) Moench solution with wellbore storage taken into account
and (2) the Moench solution with both wellbore storage and wellbore skin taken into account.
c The effect of observation-well storage on the drawdown in this well
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Fig. 12.12 Time–drawdown plot for semi-infinite aquifers: a constant-head (Eq. 1.13) and
b impermeable boundaries (Eq. 1.15)

Fig. 12.13 The effect of boundaries and boundary conditions on the drawdown in an observation
well: (curve 1) aquifer of infinite lateral extent (Eq. 1.1), (curve 2) semi-infinite aquifer with
constant-head boundary (Eq. 1.13), (curve 3) semi-infinite aquifer with impermeable boundary
(Eq. 1.15), (curve 4) strip aquifer with constant-head boundaries (Eq. 1.17), (curve 5) strip aquifer
with impermeable boundaries (Eq. 1.24), and (curve 6) strip aquifer with constant-head and
impermeable boundaries (Eq. 1.27)
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steady-state when it depends on whether the aquifer is anisotropic (Fig. 12.15a) and
what is the position of the observation well. In aquifers where the components of
the hydraulic conductivity (kr and kz) are different and the effective hydraulic
conductivity (

ffiffiffiffiffiffiffiffi
krkz

p
) has a constant value, the drawdown curves in the

steady-state-flow period coincide (see curves 2 and 3 in Fig. 12.15a). The time–
drawdown plot s—1=

ffiffi
t

p
(Fig. 12.15b) contains a linear segment corresponding to a

quasi-steady-state period.
A possible form of the drawdown plot in a partially penetrating well, represented

by a linear source (see section “Aquifer Infinite in the Horizontal Plane” of Chap. 1),
is given in Fig. 12.16. In the case of an aquifer with large thickness, the drawdown
plot will become a straight line after some delay.

12.4.2 Unconfined Aquifer

Plots (Figs. 12.17 and 12.18) show typical drawdown curves for an unconfined
aquifer (see Sect. 2.1). The plots contain three segments (early time response,
intermediate, and late time response), which correspond to different flow regimes
during pumping tests: (1) a short period, when the storage coefficient reflects the

Fig. 12.14 The drawdown in a strip aquifer with impermeable boundaries: (curve 1) in
coordinates s—lg t, (curve 2) in coordinates s—

ffiffi
t

p
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elastic compression of the aquifer, (2) this segment of the curve corresponds to
pseudo-steady-state flow with a temporary stabilization of the water level, and
(3) the gravity-drainage period, which corresponds to the manifestation of aquifer
specific yield.

The plots in Figs. 12.17, 12.18, 12.19 and 12.20 were constructed with the use
of Boulton solution (Eq. 2.10) for fully penetrating wells.

When the aquifer drainage is considerable (more than 20 % of its initial
water-saturated thickness), the accurate treatment of measurement data (Fig. 12.19)
requires drawdown correction (Eq. 2.28).

Fig. 12.15 Time–drawdown plots for a point source in a confined aquifer infinite in the horizontal
plane and thickness (Eq. 1.79): a in coordinates s—lg t; b in coordinates s—1=

ffiffi
t

p
. (curve 1)

isotropic aquifer, (curve 2) anisotropic aquifer (kr [ kz), and (curve 3) anisotropic aquifer (kr\kz)

Fig. 12.16 Comparison of
the drawdown plots in a
confined aquifer: (curve 1)
Theis solution (Eq. 1.1);
(curve 2) Hantush solution for
a linear source (Eq. 1.104)
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Fig. 12.17 Time–drawdown plot for an unconfined aquifer

Fig. 12.18 Time–distance–drawdown plot for an unconfined aquifer (curve 1). The plot is drawn
for three observation wells based on the Boulton solution (Eq. 2.10). The thin dashed lines are the
Theis solution (Eq. 1.1) assuming an elastic storage coefficient (curve 2) and a specific yield of an
unconfined aquifer (curve 3)
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The effect of storage parameters on the drawdown in an unconfined aquifer is
illustrated by Fig. 12.20. The plots show the effect of the elastic storage coefficient
(S) on the initial segment of the curve and the effect of specific yield (Sy) on its final

Fig. 12.19 Time–drawdown plot for an unconfined aquifer. Solution without correction (curve 1);
corrected drawdown (curve 2). The thin dashed lines are Theis solution (Eq. 1.1) assuming an
elastic storage coefficient (curve 3) and a specific yield of unconfined aquifer (curve 4)

Fig. 12.20 Time–drawdown plot for an unconfined aquifer. The effect of hydraulic character-
istics: a specific storage (S2\S1\S3); b specific yield (Sy2\Sy1\Sy3). The numbers on the
curves (1, 2, 3) correspond to subscripts at hydraulic characteristics
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segment. However, this feature can be seen only when the specific yield is much
greater than its elastic analog: Sy � S.

12.4.3 Leaky Aquifer

Pumping tests in leaky aquifers are described in Chap. 3. The pattern of the
drawdown plot in such aquifers depends on the hydraulic characteristics of adjacent
aquifers and aquitards.

At constant water level in the adjacent aquifer (see Sect. 3.1), the drawdown in
the main aquifer will stabilize (Fig. 12.21). The moment when the steady-state
period begins depends on the leakage factor and the hydraulic diffusivity of the
main aquifer (see Eq. A4.19).

The storage characteristics of aquitards and water-level changes in adjacent
aquifers may have a considerable effect on the drawdown in leaky aquifers
(Fig. 12.22).

In a pumping test in an unconfined two-layer aquifer (see Sect. 3.5.1), the
water-level drawdown plot (Fig. 12.23) is similar to that in a single-layer uncon-
fined aquifer (see Fig. 12.17). The difference is that the first segment of the curve
corresponds to the storage coefficient (S) of the main confined aquifer; and the third
segment, to the specific yield (Sy) of the upper unconfined aquitard (see Fig. 3.12).

In multi-aquifer systems (see Sect. 3.6), the drawdown (Fig. 12.24) depends on
the number of adjacent aquifers and aquitards. The Moench solutions (Eq. 3.122),
implemented in DP_LAQ code (see Appendix 5.5), were used for plotting.

12.4.4 Horizontally Heterogeneous Aquifer

Pumping tests in horizontally heterogeneous aquifers were described in Chap. 4.
The drawdown plot (Fig. 12.25) depends on the type of the boundary between
heterogeneity zones (linear or radial) and the zone in which the observation well is
located (the main or adjacent) (see Fig. 4.1).

In the presence of a linear interface between the two zones, the drawdown plots
for observation wells located in the main and adjacent zones have the same slope
during the quasi-steady-state flow period (Fig. 12.25a).

The drawdown plot in a radial-heterogeneous aquifer (Fig. 12.25b) is similar to
a plot in a homogeneous aquifer with wellbore skin taken into account (see curve 2
in Fig. 12.11a). The wellbore zone here corresponds to the pumping-well skin with
the difference that the skin storage coefficient is not taken into account in the
homogeneous aquifer.
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12.4.5 Pumping Test near a Stream

In pumping tests near a stream (see Sect. 5.1), the drawdown in an aquifer shows
the effect of the hydraulic conductivity and the thickness of the stream bed. The
retardation coefficient of the semipervious stream bed (see Eq. 5.12) causes an
increase in the drawdown in the steady-state flow period as compared with the
drawdown during pumping near a constant-head boundary (Fig. 12.26).

Fig. 12.21 Time–drawdown plots for a leaky aquifer: Hantush–Jacob solution (Eq. 3.1). The
effect of hydraulic characteristics: a leakage factor (B3\B1\B2); b hydraulic diffusivity
(a3\a1\a2); c transmissivity (T2\T1\T3). As B4 ! 1, the Hantush–Jacob solution tends to
the Theis solution (Eq. 1.1). The numbers on the curves (1, 2, 3, 4) correspond to subscripts at
hydraulic characteristics
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12.4.6 Pumping Test in a Fractured-Porous Reservoir

Figure 12.27 shows a typical plot of the drawdown in a fractured-porous medium
(see Sect. 6.1). By its appearance, this plot is similar to the drawdown plot in an
unconfined aquifer (Fig. 12.17). The plot was constructed with the use of the
Moench solution (Eq. 6.3), implemented in the code DP_LAQ (see Appendix 5.5).

Fig. 12.22 Time–drawdown plots for leaky aquifers: (curve 1) the water level in the adjacent
aquifer is constant—the Hantush–Jacob solution (Eq. 3.1); (curve 2) the water level in the adjacent
aquifer is constant, aquitard storage is taken into account (Eq. 3.67); (curve 3) the water level in
the adjacent aquifer is variable (Eq. 3.40); (curve 4) the water level in the adjacent aquifer is
variable, aquitard storage is taken into account (Eq. 3.73)

Fig. 12.23 Time–drawdown
plot for a two-layer
unconfined aquifer (thick
solid line): the Mironenko
solution (Eq. 3.94). The thin
dashed lines are Theis solu-
tions (Eq. 1.1) assuming
(curve 1) a storage coefficient
of the lower confined aquifer
and (curve 2) a specific yield
of the upper unconfined
aquitard
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Fig. 12.24 Time–drawdown plot for a three-layer system with different numbers of adjacent
aquifers: (curve 1) two adjacent aquifers (see Fig. 3.15a); (curve 2) a single adjacent aquifer (see
Fig. 3.15c); (curve 3) no adjacent aquifers (see Fig. 3.15e)

Fig. 12.25 Time–drawdown plots for horizontally heterogeneous aquifers: a the drawdown in the
main (curve 1) and adjacent zones (curve 2) of a linearly heterogeneous aquifer (Eqs. 4.8 and 4.9);
b the drawdown in the main zone of a radial-heterogeneous aquifer (Eq. 4.15)
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12.4.7 Constant-Head Test

In the case of constant-head pumping tests (see Chap. 8), hydraulic characteristics
can be evaluated either by the drawdown in observation wells or by changes in the
discharge of the pumping well. The drawdown curves in Fig. 12.28a were plotted
with the use of Eqs. 8.1 and 8.11; and the plots of discharge (Fig. 12.28b), with the
use of Eqs. 8.3 and 8.13.

Fig. 12.26 Time–drawdown
plots for pumping near a
stream. Stream-bed resistance
is taken into account
(curve 1): Hantush solution
(Eq. 5.7); constant-head
boundary (curve 2) (Eq. 1.13)

Fig. 12.27 Time–drawdown
plot for pumping test in a
fractured-porous medium
(thick solid line). The thin
dashed lines are Theis
solution (Eq. 1.1) assuming
(curve 1) a specific storage of
a fractured system and
(curve 2) a specific storage of
a block system (the hydraulic
diffusivity depends on the
specific storage of the block
system and the hydraulic
conductivity of the fractured
system)
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The effects of hydraulic characteristics on the drawdown in an observation well
and the pumping-well discharge during a constant-head pumping test are shown in
Fig. 12.29.

12.4.8 Slug Test

Plots of water-level recovery during slug tests (see Chap. 9) are convenient to
construct in normalized coordinates with the ordinate equal to the ratio of level
recovery to the initial change of the water level in the tested well (Fig. 12.30). As
can be seen from the plot, a noninstantaneous change in the initial level causes a
delay in recovery, hence, an underestimation of aquifer specific storage. The plot
also gives a typical curve of water-level changes in an observation well. However,
in practice, observation wells are rarely used, because of the small radius of
influence in slug tests (see Appendix 4).

The effect of the storage coefficient and transmissivity on water-level changes in
the tested well during slug tests is shown in Fig. 12.31.

Fig. 12.28 Time plots for a constant-drawdown pumping. Plots of a drawdown in an observation
well and b discharge in the pumping well for a confined aquifer (curve 1) and a leaky aquifer
(curve 2)
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12.4.9 Recovery Test

Observations of water-level recovery after pumping provide data that can be used to
evaluate hydraulic characteristics. Their effect on level-recovery dynamics in a
confined aquifer (see Sect. 1.1) is shown in Figs. 12.32 and 12.33. The plots

Fig. 12.29 The effect of hydraulic characteristics on the drawdown in an observation well and the
discharge in the pumping well during a constant-head pumping test. The effect of hydraulic
diffusivity (or specific storage) on a the drawdown (a3\a1\a2 or S2\S1\S3) and b discharge
(a2\a1\a3 or S3\S1\S2). c The effect of transmissivity (T3\T1\T2) on discharge. The
numbers at the curves (1, 2, 3) correspond to the subscripts at hydraulic characteristics
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were constructed for different reference points of recovery measurement (see
Chap. 11), i.e., from the start of pumping (Fig. 12.32) and from the end of
pumping (Fig. 12.33).

Fig. 12.30 Normalized water-level recovery versus time for a slug test: Cooper solution for the
tested well (Eq. 9.1)—an instantaneous change in the initial water level (curve 1); Picking solution
(Eq. 9.5), taking into account a delay in the change in initial level (curve 2); Cooper solution of an
observation well (curve 3) (Eq. 9.3)

Fig. 12.31 Normalized water-level recovery versus time for slug tests. The effect of hydraulic
characteristics: a storage coefficient (S2\S1\S3); b transmissivity (T2\T1\T3). The numbers at
the curves (1, 2, 3) correspond to the subscripts at hydraulic characteristics
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Chapter 13
Analytical Solutions for Complex
Engineering Problems

The basic analytical relationships and methods proposed in this study for processing
aquifer test data were implemented and tested in ANSDIMAT software (Analytical
and Numerical Solutions Direct and Inverse Methods for Aquifer Test)
(Sindalovskiy 2014). The main function of this software is the evaluation of the
hydraulic characteristics of aquifers subject to pumpage from wells. An important
supplement to this is a function of the software, enabling analytical evaluation of
aquifer characteristics based on monitoring data, where the source of perturbation is
variations in the surface level of a water body.

In addition, the software provides a number of interesting and useful functions
aimed at solving engineering–hydrogeological problems, such as design calcula-
tions for a system of interacting wells in the software module of analytical simu-
lations, evaluation of water inflow into open pits, design calculations of well
drainage, and wellhead protection areas. The solution of these problems is based on
groundwater flow equations describing the water flow toward wells. Taken together
with other options of the program (including numerical simulation of axially
symmetric problems; prompt calculation of expected drawdown under typical
conditions; auxiliary expert calculations; databases on hydraulic characteristics;
evaluation of special functions; online unit conversions; and many others), this
makes ANSDIMAT a comprehensive and up-to-date instrument indispensable in
the everyday work of hydrogeologists.

This book is focused primarily on solutions related for processing aquifer tests,
while not intended to give a detail description of the software and the problems it
can solve. This chapter considers the analytical solutions incorporated in
ANSDIMAT and not discussed in previous chapters. These are solutions for
parameter evaluations based on data on aquifer response to fluctuation in the river
stage (Sect. 13.1) and for the calculation of water inflow into open pits (Sect. 13.3).
The chapter also gives brief information on an alternative approach to simulating
well systems (Sect. 13.3), which considerably simplifies the solution of complex
engineering problems.
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13.1 Evaluation of Groundwater Response
to Stream-Stage Variation

The objective is to evaluate the hydraulic characteristics of aquifers based on data
on groundwater-level monitoring, reflecting level variations in observation wells
caused by variations in the surface level of a water body (e.g., in a river). The
conditions considered include an instantaneous rise or drop of water level in a river
(Sect. 13.1.1) or step-wise level changes (Sect. 13.1.2).

Here, as well as in the case with common testing, the calculations take into
account various factors, including the effect of boundaries, leakage, retardation by
semipervious streambeds, etc. Analytical solutions are given for semi-infinite and
bounded nonleaky and leaky confined aquifers. For guides for correcting solutions
for unconfined aquifers, see Eqs. 13.12 and 13.13. The bounded aquifers include
the strip aquifer, which has two boundaries, one of which is a river and the other is
an impermeable boundary; and the quadrant aquifer with two perpendicular rivers
with the same characteristics and synchronous level variations.

The transient solutions for stream-aquifer interaction make it possible to evaluate
aquifer hydraulic diffusivity (a) and, under appropriate conditions, the retardation
coefficient of the semipervious streambed (D L) and the leakage factor (B).

13.1.1 Instantaneous Level Change Followed
by a Steady-State Period

A stream’s water level abruptly rises (or drops) by s0 (Figs. 13.1 and 13.3) and next
remains constant. The rate of water-level change in a homogeneous aquifer depends
on its hydraulic diffusivity. In the case of leakage through the underlying layer
(Fig. 13.3) and/or the retardation because of the semipervious streambed
(Figs. 13.1b, d and 13.3b, d), groundwater dynamics experience the effect of the
hydraulic properties of the aquitard underlying the aquifer, as well as the properties
of the stream bank, which separates the river from the aquifer.

Basic Analytical Relationships

Transient Flow Equations
1. Nonleaky aquifers
1.1. Semi-infinite aquifer with the retardation coefficient of the semipervious

streambed is not taken into account (Fig. 13.1a) (Carslow and Jaeger 1959):

s ¼ s0erfc
r

2
ffiffiffiffi
at

p ; ð13:1Þ

where s is groundwater-level change in an observation well, m; s0 is an instanta-
neous initial change in river’s water level, m; r is the distance from the observation
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well to the river, m; a is the hydraulic diffusivity (m2/d): in the case of a confined
aquifer, a ¼ km=S; for an unconfined aquifer, a ¼ km=Sy; k is the hydraulic con-
ductivity of the aquifer, m/d; m is confined aquifer thickness or the initial
water-saturated thickness of an unconfined aquifer, m; S is the storage coefficient of
a confined aquifer, dimensionless; Sy is the specific yield of an unconfined aquifer,
dimensionless; t is the time elapsed since the start of perturbation in the stream, d;
erfc �ð Þ is the complementary error function (see Appendix 7.12).

1.2. Semi-infinite aquifer with the retardation coefficient of the semipervious
streambed taken into account (Fig. 13.1b) (Carslow and Jaeger 1959; Hall and
Moench 1972):

s ¼ s0 erfc
r

2
ffiffiffiffi
at

p � exp
r
DL

þ at
DL2

� �
erfc

r

2
ffiffiffiffi
at

p þ
ffiffiffiffi
at

p
DL

� �� �
; ð13:2Þ

where D L ¼ m00k=k00 is the retardation coefficient, m; k00; m00 is the hydraulic
conductivity (m/d) and thickness (m) of the semipervious streambed.

1.3. Strip aquifer with the retardation coefficient of the semipervious streambed
not taken into account (Fig. 13.1c) (Cooper and Rorabough 1963; Hall and Moench
1972):

Fig. 13.1 Nonleaky aquifers. a, b Semi-infinite aquifers; c, d strip aquifers; a, c the hydraulic
characteristics of the streambed and the aquifer are the same; b, d conceptual models taking into
account the retardation coefficient of the semipervious streambed
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s ¼ s0 1� 2
L

X1
n¼1

1
b
sin brð Þ exp �b2at

	 
" #
; ð13:3Þ

where b ¼ pð2n� 1Þ=ð2LÞ; L is the distance between the river and the imperme-
able boundary, m.

An alternative solution (Pinder et al. 1969) is:

s ¼ s0
X1
n¼1

�1ð Þn�1 erfc
2 n� 1ð ÞLþ r

2
ffiffiffiffi
at

p þ erfc
2nL� r

2
ffiffiffiffi
at

p
� �

: ð13:4Þ

1.4. Strip aquifer with the retardation coefficient of the semipervious streambed
taken into account (Fig. 13.1d) (Carslow and Jaeger 1959; Hall and Moench 1972):

s ¼ s0 1� 2L
D L

X1
n¼1

exp �c2nat=L
2

	 

cos cn 1� r=L½ �ð Þ

c2n þ L=D Lð Þ2 þ L=D L
� �

cos cn

2
4

3
5; ð13:5Þ

where cn are positive roots of the equation c tan c ¼ L=D L (see Appendix 7.15).
1.5. Aquifer–quadrant with the retardation coefficient of the semipervious

streambed not taken into account (Figs. 13.1a and 13.2a) (Shestakov 1965):

s ¼ s0 1� erf
r

2
ffiffiffiffi
at

p erf
r2

2
ffiffiffiffi
at

p
� �

; ð13:6Þ

where r2 is the distance from the observation well to the second stream, m; erf(·) is
the error function (see Appendix 7.12).

1.6. Aquifer–quadrant with the retardation coefficient of the semipervious
streambed taken into account (Figs. 13.1b and 13.2b):

s ¼ s0
1� erf

r

2
ffiffiffiffi
at

p erf
r2

2
ffiffiffiffi
at

p � exp
r
DL

þ at
D L2

� �
erfc

r

2
ffiffiffiffi
at

p þ
ffiffiffiffi
at

p
DL

� �
�

� exp
r2
DL

þ at
D L2

� �
erfc

r2
2
ffiffiffiffi
at

p þ
ffiffiffiffi
at

p
DL

� �
2
664

3
775:
ð13:7Þ

Fig. 13.2 A planar view of an aquifer-quadrant. a The hydraulic properties of streambed and the
aquifer are the same; b a conceptual model with the retardation coefficient of the semipervious
streambed taken into account
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2. Leaky aquifers (Teloglou and Bansal 2012)
2.1. Semi-infinite aquifer with the retardation coefficient of the semipervious

streambed not taken into account (Fig. 13.3a):

s ¼ s0

2
exp �r=Bð Þerfc r � 2at=B

2
ffiffiffiffi
at

p þ exp r=Bð Þerfc rþ 2at=B
2
ffiffiffiffi
at

p
� �

; ð13:8Þ

where B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmm0=k0

p
is the leakage factor, m; k0; m0 are the hydraulic conductivity

(m/d) and thickness (m) of the aquitard.
2.2. Semi-infinite aquifer with the retardation coefficient of the semipervious

streambed taken into account (Fig. 13.3b):

s ¼ s0

1
2

exp �r=Bð Þ
1þD L=B

erfc
r � 2at=B
2
ffiffiffiffi
at

p þ exp r=Bð Þ
1� D L=B

erfc
rþ 2at=B
2
ffiffiffiffi
at

p
� �

�

� exp r=D Lþ 1� D L2=B2ð Þat=D L2½ �
1� D L2=B2 erfc

rþ 2at=D L

2
ffiffiffiffi
at

p

8>><
>>:

9>>=
>>;: ð13:9Þ

In Eq. 13.9, the retardation coefficient of the semipervious streambed cannot be
equal to the leakage factor, i.e., D L 6¼ B.

2.3. Strip aquifer with the retardation coefficient of the semipervious streambed
not taken into account (Fig. 13.3c):

Fig. 13.3 Leaky aquifers. a, b Semi-infinite aquifers; c, d strip aquifers; a, c the hydraulic
characteristics of river bed and the aquifer are the same; b, d conceptual models with the
retardation coefficient of the semipervious streambed taken into account
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s ¼ s0
cosh

L� r
B

cosh
L
B

� 2
X1
n¼1

cn cos cn 1� r=Lð Þ½ � exp � L2=B2 þ c2n
	 


at=L2
� �

c2n þ L2=B2
	 


sin cn

8><
>:

9>=
>;;

ð13:10Þ

here, cn are the positive roots of the equation c tan c ! 1 (see Appendix 7.15).
These roots are cn ¼ p=2 � 2n� 1ð Þ.

2.4. Strip aquifer with the retardation coefficient of the semipervious streambed
taken into account (Fig. 13.3d):

s ¼ s0

cosh
L� r
B

D L
B

sinh
L
B
þ cosh

L
B

�

� 2L
D L

X1
n¼1

c2n cos cn 1� r=Lð Þ½ � exp � L2=B2 þ c2n
	 


at=L2
� �

c2n þ L=DLþ L2=D L2
	 


c2n þ L2=B2
	 


cos cn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð13:11Þ

3. Unconfined aquifers
Equations 13.1–13.11 are given for confined or unconfined aquifers where

groundwater-level changes are insignificant compared with the initial
water-saturated thickness. In other cases, the equations are written in the following
manner (Marino 1973): for an instantaneous rise in river-water level:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s0 2mþ s0ð Þf r; tð Þ

p
� m ð13:12Þ

and for an instantaneous drop in river-water level:

s ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � s0 2m� s0ð Þf r; tð Þ

p
; ð13:13Þ

where m is the initial water-saturated thickness of the unconfined aquifer, m; f r; tð Þ
is a function describing level variations in the aquifer.

For example, level rise in an observation well located in a semi-infinite
unconfined aquifer (Fig. 13.1a) can be calculated as:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s0 2mþ s0ð Þerfc r

2
ffiffiffiffi
at

p
r

� m: ð13:14Þ

Equations for a Steady-State Flow Period (for leaky aquifers) (Teloglou and Bansal
2012)

1. Semi-infinite aquifer with the retardation coefficient of the semipervious
streambed not taken into account (Fig. 13.3a):
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s ¼ s0 exp �r=Bð Þ: ð13:15Þ

2. Semi-infinite aquifer with the retardation coefficient of the semipervious
streambed taken into account (Fig. 13.3b):

s ¼ s0
exp �r=Bð Þ
1þD L=B

: ð13:16Þ

3. Strip aquifer with the retardation coefficient of the semipervious streambed not
taken into account (Fig. 13.3c):

s ¼ s0cosh
L� r
B



cosh

L
B
: ð13:17Þ

4. Strip aquifer with the retardation coefficient of the semipervious streambed
taken into account (Fig. 13.3d):

s ¼ s0
cosh

L� r
B

D L
B

sinh
L
B
þ cosh

L
B

: ð13:18Þ

13.1.2 Multi-stage or Gradual Level Changes

The equations proposed in Sect. 13.1.1 imply an instantaneous change in river level
by s0. In the case of level oscillations (Fig. 13.4a), the interaction between a river
and an aquifer can be described by a general equation, which is based on transient
relationships for a single perturbation and the principle of superposition:

Fig. 13.4 Examples of plots of river-level changes: a step-wise; b level change with a variable
rate (the rate (vj) is constant within a time interval). The hatched rectangles show the values of
recharge (ej) for time intervals. j is stage number
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s ¼
Xnt
j¼1

s0j � s0j�1

� �
� f r; t � tj

	 
� �
; ð13:19Þ

where f r; tð Þ is a function describing level variations in the aquifer (see
Sect. 13.1.1); nt is the number of water level change stages by moment t; s0j is the

height of the jth stage of river level change (s00 ¼ 0), m; t is the time elapsed from
the first perturbation in the river, d; tj is the moment of the start of the jth stage
(t1 ¼ 0), d.

For example, level change in a semi-infinite aquifer (Fig. 13.1a) at such varia-
tions can be calculated as

s ¼
Xnt
j¼1

s0j � s0j�1

� �
� erfc r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � tjÞ

p : ð13:20Þ

Equation 13.1 implies instantaneous changes in river level. In the case of a
gradual rise (drop) of the level at a constant rate, the water-level change in an
aquifer can be calculated as (Bochever et al. 1969)

s ¼ vt � 4i2erfc r

2
ffiffiffiffi
at

p ð13:21Þ

or, with infiltration recharge taken into account:

s ¼ vt � 4i2erfc r

2
ffiffiffiffi
at

p þ et
S

1� 4i2erfc
r

2
ffiffiffiffi
at

p
� �

; ð13:22Þ

where v is the constant rate of level rise (drop) in the river, m/d; e is recharge, m/d;
i2erfc �ð Þ is an iterated integral of the complementary error function (see Appendix
7.12).

When the rate of level rise is a step function (remaining constant during some
time intervals) (Fig. 13.4b), the equation for level variations in the aquifer can be
written as:

s ¼
Xnt
j¼1

vj � vj�1
	 


t � tj
	 


4i2erfc
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � tjÞ

p þ

þ 1
S

ej � ej�1
	 


t � tj
	 


1� 4i2erfc
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � tjÞ

p
 !

2
6664

3
7775; ð13:23Þ

where vj is the jth stage of level rise (drop) in the stream (v0 ¼ 0), m/d; ej is the jth
stage of recharge (e0 ¼ 0), m/d.

Equation 13.23 implies synchronous changes in the level rise (drop) rate and the
recharge value (Fig. 13.4b).
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13.2 Analytical Modeling

The problems of groundwater dynamics in terms of the aquifer system’s response to
wellfield operation are commonly solved with the use of models based on numerical
methods for solving differential equations. The obvious advantages of numerical
models and methods in solving various hydrogeological problems are widely
known. These include, primarily: the incorporation of various initial and boundary
conditions; the description of arbitrary geological heterogeneity and nonlinear
boundaries of groundwater flow; the simulation of complex hydrogeological sec-
tions with intercalation of aquifers and their wedging out; the inclusion of natural
and anthropogenic factors that have their effect on the hydrodynamics; and many
others.

The drawbacks of numerical models include, in particular: the dependence of the
result on the model domain discretization and the choice of time step; the effect of
model domain boundaries on groundwater flow; the difficulties in the validation of
the obtained result and its possible ambiguity; and the problems with simulating
pumping wells (especially in regional-scale problems). Another disadvantage is the
considerable time required to develop a numerical model and the necessary expe-
rience in dealing with simulation programs.

In many cases, the lack of data on the study object requires the researcher to
schematize and simplify the hydrogeological conditions, neglecting the complexity
of the subsurface environment. Under such conditions, the use of full-fledge
numerical models can be unjustified and, in some cases, erroneous.

ANSDIMAT software implements an alternative approach to well-systems
simulation. This approach is based on the development of simplified hydrodynamic
models underlain by the solutions of well-known groundwater flow equations
(Theis 1935; Hantush 1964; Neuman 1972; Moench 1993; etc.) and the principle of
superposition (see Sect. 10.2). In other words, this approach can be referred to as
analytical modeling, i.e., basic analytical solutions are used to simulate the response
of aquifers to pumping under standard geological conditions.

The analytical model works within a specified structure: confined aquifer,
unconfined aquifer, leaky aquifer, horizontally heterogeneous aquifers, etc. The
effect of linear boundaries of groundwater flow can be taken into account
(Fig. 13.5). This means that an analytical model can be used in the cases where the
natural hydrogeological situation can be schematized to simple standard conditions.

Analytical modeling can be of use for the hydrogeologists involved in assessing
groundwater resources, planning and implementing pumping tests, designing large
and small-size water supply systems, as well as assessing the mutual interaction of
these systems in operation and their environmental effects. Such an approach to
simulation provides the researcher with an instrument for prompt and descriptive
choice of the optimal number and layout of wells, the evaluation of maximal
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drawdown at likely discharge rates of the pumping wells, and the assessment of the
duration of pumping test and its range of influence.

The major advantage of analytical modeling is the absolute accuracy of the
estimated level change in either pumping well or any point within the model
domain. Also important in this case is the correct simulation of flows in infinite
domains, whereas the results of numerical simulation may contain considerable
errors because of incorrectly specified model domain boundaries. The analytical
models do not require discretization in space or time, thus making the development
and use of models much simpler.

The drawbacks of such models are the limited number of standard situations and
the impossible specification of complex groundwater-flow boundaries.

As mentioned above, the analytical modeling of well systems is based on the
fundamental transient groundwater flow equations and the principle of superposi-
tion. Any such equation describes water-level changes in an aquifer under the effect
of a single constant-discharge well, while the superposition incorporates the effect
of any number of wells, variations of their discharge, and groundwater-flow
boundaries (see Figs. 10.1 and 10.2). This reasoning can be expressed by the
general Eq. 10.23.

Groundwater flows in different zones of heterogeneous or layered aquifers
within one model domain can be described by different analytical equations. For
example, in the case of horizontally heterogeneous aquifers (see Sect. 4.1), the
drawdown in the main and adjacent zones is described by two different formulas

Fig. 13.5 ANSDIMAT software graphical interface window showing the predicted drawdown
map and profile
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(Maksimov 1962; Fenske 1984). For a leaky aquifer system with the drawdown in
an adjacent aquifer and aquitard storage taken into account (see Sect. 3.3), three
formulas are used in the calculations (Neuman and Witherspoon 1969). Each of
them separately describes level changes in the pumped aquifer, the unpumped
aquifer, and the aquitard.

The development of analytical models in the ANSDIMAT environment is rel-
atively simple, comprising three stages: (1) the choice of a typical conceptual model
(including boundary conditions), which will be used by the program to automati-
cally generate a three-dimensional model domain; (2) the specification of the
thicknesses and hydraulic characteristics of the aquifers and aquitards; and (3) the
location of pumping wells in the model domain and the assignment of their dis-
charges (either constant or variable). This is quite enough for achieving the final
result: to visualize water-level variations at any point in the model domain, to find
the maximal drawdown, and to construct the time–drawdown plot and a map of the
groundwater’s potentiometric surface.

The incorporation in the model of the active porosity of aquifer material, as well
as the gradient of natural groundwater flow and its direction, enables analytical
simulation models to be used to solve simple solute transport problems: e.g., to
calculate the trajectories and travel times of conservative particles, starting from any
point of the model domain, and to delineate the wellhead protection areas for
arbitrarily distributed groundwater-intake facilities.

With the allocation of a contour of an open pit in the model domain, water inflow
into the pit can be evaluated, drainage wells distribution can be designed, and their
discharges required for draining the pit can be evaluated.

13.3 Simplified Analytical Relationships for Assessing
Water Inflow into an Open Pit

The evaluation of water inflow into open pits requires preliminary schematization of
the geological section and, specification of groundwater flow boundaries (if any)
with appropriate boundary conditions.

The basic assumptions and conditions (Fig. 13.6) are:

• the aquifer is confined, unconfined, or confined–unconfined; in any of the three
cases, the leakage from the underlying layer can also be considered;

• five configurations of flow domain are considered: infinite aquifer, semi-infinite
aquifer, strip aquifer, quadrant aquifer, and circular aquifer;

• two variants of boundary conditions are considered: constant-head and imper-
meable boundaries.
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13.3.1 Effective Open Pit Radius

Water inflow into a pit depends on its radius, as the pit is assumed circular. In the
case of arbitrary shape (Fig. 13.7), an effective pit radius needs to be introduced
depending on the configuration of the outer contour of the pit.

There are several formulas for evaluating effective pit radius.
1. Nonelongated pit (Fig. 13.7a), b=d[ 0:5. An estimate of the effective radius

by pit area (Trojanskiy et al. 1956):

Fig. 13.7 Schematic diagrams for evaluating an effective pit radius: examples of pit contours of
a simple and b complex shape

Fig. 13.6 Schematic diagrams for calculating water inflow into an open pit. a Confined aquifer;
b unconfined aquifer; c confined–unconfined aquifer; d an example of pit location in a leaky
unconfined aquifer
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ro ¼
ffiffiffiffiffiffiffiffiffi
F=p

p
ð13:24Þ

or by pit perimeter (Mironenko et al. 1965):

ro ¼ P= 2pð Þ; ð13:25Þ

where ro is the effective pit radius, m; d; b are pit length and width, respectively, m;
F is pit area, m2; P is pit perimeter, m.

2. Elongated pit, b=d� 0:5. An estimate of the effective radius by the formula
(Mironenko et al. 1965):

ro ¼ g
4

dþ bð Þ; ð13:26Þ

where g is a tabulated function of b=d ratio (Table 13.1).
Function g can be approximated by a polynomial (the author’s approximation):

g ¼ �5:1183 � x4 þ 7:1598 � x3 � 3:8585 � x2 þ 1:1255 � xþ 1:0007; ð13:27Þ

where x ¼ b=d.
3. A complex-shape pit (Fig. 13.7b). An estimate of effective radius by distances

from characteristic points on the pit contour (Mironenko et al. 1965):

lg ro ¼ 1
n

Xn
i¼1

lg ri; ð13:28Þ

where ri is the distance from a chosen point (e.g., pit center) to a characteristic point
on the pit perimeter (e.g., an angular point), m; n is the number of characteristic
points on the pit contour.

13.3.2 The Radius of Influence for Infinite Nonleaky
Aquifers

An important characteristic in the calculation of water inflow into open pits is the
radius of influence. The radius of influence for limited aquifers can be evaluated
analytically, depending on the type of boundary (linear, circular, etc.) and the
boundary condition, while, in the case of an infinite nonleaky aquifer, the estimate
of the range is ambiguous.

Table 13.1 The values of
function η

b=d 0.05 0.1 0.2 0.3 0.4 0.5

g 1.05 1.08 1.12 1.144 1.16 1.174
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There are several formulas for evaluating the radius of influence.
1. The radius of pit influence for transient groundwater flow (Mironenko et al.

1965) is:

Ro ¼ ro þ
ffiffiffiffiffiffiffiffi
p at

p
; ð13:29Þ

where Ro is the radius of influence, m; a is hydraulic diffusivity, m2/d; t is the time
elapsed since the start of drainage system operation, d.

2. An estimate of the radius of influence based on the recharge rate (Mironenko
et al. 1965):

Ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lgRo � lg ro � 0:217

p
¼ 0:66

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
e

2m� soð Þso � 0:5ro

r
; ð13:30Þ

where k is hydraulic conductivity, m/d; so is the drawdown at a pit outline, m; m is
the initial water-saturated thickness of the unconfined aquifer, m; e is recharge rate,
m/d.

3. Estimating the radius of influence by the drawdown in an observation well
located at some distance from the pit (Trojanskiy et al. 1956):
in the case of a confined aquifer:

Ro ¼ exp
so ln r � s ln ro

so � s
; ð13:31Þ

in the case of an unconfined aquifer:

Ro ¼ exp
so 2m� soð Þ ln r � s 2m� sð Þ ln ro

so 2m� soð Þ � s 2m� sð Þ ; ð13:32Þ

in the case of a confined–unconfined aquifer:

Ro ¼ exp
2H � mð Þm� H � soð Þ2

h i
ln r � 2H � mð Þm� H � sð Þ2

h i
ln ro

H � sð Þ2� H � soð Þ2 ;

ð13:33Þ

where r is the distance from the observation well to pit center, m; s is the drawdown
in the observation well, m; H is the initial head in the confined–unconfined aquifer,
measured from its bottom (Fig. 13.6c), m.
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13.3.3 Estimating Water Inflow into an Open Pit

This section gives basic analytical relationships for evaluating water inflow (Q) into
open pits and the drawdown (so) in a pit given the inflow (Q). The solutions imply
the pit to be fully penetrating. The partial penetration of a pit should be taken into
account when its radius is less than the aquifer thickness and the penetration depth
is less than half the aquifer thickness. The analytical relationships for such cases are
derived from equations described in Sects. 1.3.3.1, 2.1, and 3.4.

Given water inflow Q into a pit and the drawdown so, a new inflow Qn at any
design drawdown son can be evaluated (Trojanskiy et al. 1956): for a confined
aquifer (Fig. 13.6a):

Qn ¼ Q
son
so

ð13:34Þ

and for an unconfined aquifer (Fig. 13.6b):

Qn ¼ Q
2m� sonð Þson
2m� soð Þso : ð13:35Þ

13.3.3.1 Nonleaky Aquifers

The solutions considered can be used to assess water inflow into a pit and the
drawdown at the pit outline in the absence of leakage from adjacent aquifers
(Fig. 13.6a, b, c).

Basic Analytical Relationships
Estimating water inflow and drawdown for a pit in a confined aquifer (Fig. 13.6a)
(Trojanskiy et al. 1956):

Q ¼ 2p km
so

lnRo � ln ro
; ð13:36Þ

so ¼ Q
2p km

ln
Ro

ro
; ð13:37Þ

unconfined aquifer (Fig. 13.6b) (Trojanskiy et al. 1956):

Q ¼ p k
2m� soð Þso
lnRo � ln ro

; ð13:38Þ

so ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

p k
ln
Ro

ro

r
; ð13:39Þ
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and confined–unconfined aquifer (Fig. 13.6c) (Mironenko et al. 1965):

Q ¼ p k
2H � mð Þm� H � soð Þ2

lnRo � ln ro
; ð13:40Þ

so ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � mð Þm� Q

p k
ln
Ro

ro

r
: ð13:41Þ

The radius of influence Ro in Eqs. 13.36–13.41 depends on whether the
groundwater flow is bounded and on the boundary conditions.

1. Aquifers of infinite lateral extent: the radius of influence is determined by a
formula from Eqs. 13.29–13.33.

2. Semi-infinite aquifers (Fig. 13.8)
2.1. Constant-head boundary (Fig. 13.8a) (Mironenko et al. 1965):

Ro ¼ 2Lo; ð13:42Þ

where Lo is the distance from the pit center to the boundary, m. A more accurate
formula can be derived from Eq. 1.14:

Ro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o þ 4L2o

q
; ð13:43Þ

2.2. Impermeable boundary (Fig. 13.8b): Eq. 1.16 yields:

Ro ¼ 2:25atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o þ 4L2o

p ; ð13:44Þ

3. Strip aquifer (Fig. 13.9)
3.1. Constant-head boundaries (Fig. 13.9a) (Mironenko et al. 1965):

Ro ¼ 2
p
L sin

p Lo
L

; ð13:45Þ

Fig. 13.8 Semi-infinite
aquifer: the pit is located near
a a constant-head and
b impermeable boundary
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where L is strip-aquifer width, m. An alternative formula can be derived from
Eq. 1.22:

Ro ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh

pro
L

� cos
2pLo
L

cosh
pro
L

� 1

vuuuut : ð13:46Þ

3.2. Impermeable boundaries (Fig. 13.9b): Eq. 1.26 yields

Ro ¼ ro exp

ffiffiffi
p

p
L

exp � r2o
4at

� � ffiffiffiffiffiffiffi
4at

p
� ffiffiffi

p
p

roerfc

ffiffiffiffiffiffiffi
r2o
4at

r" #
þ

þ
X1
n¼1

1
n
cos2

npLo
L

exp � npro
L

� �
erfc

ffiffiffiffiffiffiffi
r2o
4at

r
� np

ffiffiffiffi
at

p
L

 !
�

� exp
npro
L

� �
erfc

ffiffiffiffiffiffiffi
r2o
4at

r
þ np

ffiffiffiffi
at

p
L

 !
2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
:

ð13:47Þ

3.3. Constant-head and impermeable boundaries (Fig. 13.9c) (Mironenko et al.
1965):

Ro ¼ 4
p
L tan

p Lo
2L

: ð13:48Þ

An alternative formula can be derived from Eq. 1.31:

Ro ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh

p ro
2L

� cos
p Lo
L

� �
cosh

p ro
2L

þ 1
h i

cosh
p ro
2L

þ cos
pLo
L

� �
cosh

p ro
2L

� 1
h i

vuuuuut ; ð13:49Þ

here, Lo is the distance from pit center to the constant-head boundary, m.

Fig. 13.9 Strip aquifer: the location of a pit between two parallel boundaries. a Constant-head
boundaries, b impermeable boundaries, and c constant-head and impermeable boundaries. L is the
width of the strip aquifer
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4. Aquifer-quadrant (Fig. 13.10)
4.1. Constant-head boundaries (Fig. 13.10a) (Mironenko et al. 1965):

Ro ¼ 2LoL0offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2o þ L02o

p ; ð13:50Þ

where L0o is the distance from the pit center to the second boundary (in the case of
mixed boundary conditions, to the impermeable boundary), m. Equation 13.50 was
derived from Eq. 1.34.

4.2. Impermeable boundaries (Fig. 13.10b): Eq. 1.37 yields

Ro ¼ 2:25atð Þ2
8L0oLo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2o þ L02o

p ; ð13:51Þ

4.3. Constant-head and impermeable boundaries (Fig. 13.10c) (Mironenko et al.
1965):

Ro ¼ 2Lo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2o=L

02
o þ 1

q
: ð13:52Þ

Formula (Eq. 13.52) was derived from Eq. 1.40.
5. Circular aquifer (Fig. 13.11)
5.1. Constant-head boundary (Fig. 13.11a) (Mironenko et al. 1965):

Fig. 13.11 Circular aquifer:
a pit located within a circular
aquifer with a a constant-head
and b impermeable boundary.
R is the radius of the circle

Fig. 13.10 Aquifer-quadrant: a pit located in a corner between perpendicular boundaries.
a Constant-head boundaries, b impermeable boundaries, and c constant-head and impermeable
boundaries
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Ro ¼ R� L2o
R
; ð13:53Þ

where R is the radius of circular aquifer, m; Lo is the distance from pit center to
circle center, m. Formula (Eq. 13.53) is derived from Eq. 1.78.

5.2. Impermeable boundary (Fig. 13.11b) (Bochever 1968):

Ro ¼ 0:47R3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � L2o
	 
2 þ r2oR

2
q : ð13:54Þ

In the case of a circular aquifer with an impermeable boundary, Eq. 13.54 is
substituted into the following relationships: for a confined aquifer (Fig. 13.6a):

Q ¼ 2pkm
so þ s0o

2at=R2 þ lnRo � ln ro
; ð13:55Þ

so ¼ Q
2pkm

ln
Ro

ro
þ 2at

R2

� �
� s0o; ð13:56Þ

for an unconfined aquifer (Fig. 13.6b):

Q ¼ pk
2m� soð Þso þ 2s0om

2at=R2 þ lnRo � ln ro
; ð13:57Þ

so ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

pk
ln
Ro

ro
þ 2at

R2

� �
þ 2s0om

s
; ð13:58Þ

for a confined–unconfined aquifer (Fig. 13.6c):

Q ¼ pk
2H � mð Þm� H � soð Þ2 þ 2s0om

2at=R2 þ lnRo � ln ro
; ð13:59Þ

so ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � mð Þm� Q

p k
ln
Ro

ro
þ 2at

R2

� �
þ 2s0om

s
; ð13:60Þ

s0o ¼
Q0

p kmR2 at; ð13:61Þ

where s0o is a correction for drawdown in the pit introduced to account for the
additional inflow from the outer domain, m; Q0 is the rate of additional inflow, m3/d.
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13.3.3.2 Leaky Aquifers

Solutions for water inflow into a pit and the drawdown at the pit outline can be
considered in the case of leakage from the underlying layer (Fig. 13.6d). Contrary
to the nonleaky aquifers (see Sect. 13.3.3.1), formulas for water inflow include a
new term, namely, a function of the radius of influence (FR). This function is an
integrated characteristic, depending on the pit radius, leakage factor, and distances
to the boundaries.

Basic Analytical Relationships
Confined aquifer:

Q ¼ so
2pkm
FR

; ð13:62Þ

so ¼ Q
2pT

FR; ð13:63Þ

unconfined aquifer (Fig. 13.6d):

Q ¼ pk
2m� soð Þso

FR
; ð13:64Þ

so ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Q

pk
FR

r
; ð13:65Þ

confined–unconfined aquifer:

Q ¼ pk
2H � mð Þm� H � soð Þ2

FR
; ð13:66Þ

so ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � mð Þm� Q

pk
FR

r
; ð13:67Þ

where FR is the function of the radius of influence, dimensionless.
As was the case with a nonleaky aquifer (Sect. 13.3.3.1), solutions for water

inflow into and drawdown in the pit (Eqs. 13.62–13.67) depend on whether the
flow is bounded and on appropriate boundary conditions.

1. Infinite aquifers: Eq. 3.11 yields

FR ¼ K0 ro=Bð Þ; ð13:68Þ
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2. Semi-infinite aquifers (Fig. 13.8): Eq. 3.12 yields

FR ¼ K0 ro=Bð Þ � K0 2Lo=Bð Þ; ð13:69Þ

where the minus sign is for a constant-head boundary, and the plus sign, for an
impermeable boundary; K0 �ð Þ is modified Bessel function of the second kind of the
zero order (see Appendix 7.13).

3. Strip aquifer (Fig. 13.9)
3.1. Constant-head boundaries: Eq. 3.20 yields

FR ¼
X1
n¼1

2
bn

exp � pro
L

bn
� �

sin
npLo
L

� �2

; bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ L

pB

� �2
s

: ð13:70Þ

3.2. Impermeable boundaries: Eq. 3.22 yields

FR ¼ pB
L

exp � r0
B

� �
þ
X1
n¼1

2
bn

exp � p r0
L

� �
cos

npLo
L

� �2

; bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ L

pB

� �2
s

:

ð13:71Þ

3.3. Impermeable and constant-head boundaries: Eq. 3.24 yields

FR ¼
X1
n¼1

�1ð Þn 4
bn

exp � pr0
2L

� �
sin

2n� 1ð Þp Lo � 2Lð Þ
2L

cos
2n� 1ð Þp Lo � Lð Þ

2L
;

ð13:72Þ

bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1ð Þ2 þ 2L

pB

� �2
s

:

4. Aquifer–quadrant (Fig. 13.10):

FR ¼ K0
ro
B

� � �
þ
þ

K0
2L0o
B

� � þ
þ
�

K0
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2o þ L02o

p
B

 ! �
þ
�

K0
2Lo
B

� �
; ð13:73Þ

where the top signs correspond to an aquifer–quadrant with constant-head bound-
aries; the middle signs to impermeable boundaries; and the bottom signs to mixed
boundary conditions. Equation 13.73 was derived from Eq. 3.11 and the principle
of superposition.
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5. Circular aquifer (Fig. 13.11)
5.1. Constant-head boundary: Eq. 3.37 yields

Ro ¼ K0
ro
B

� �
�
K0

R
B

� �
I20

Lo
B

� �

I0
R
B

� � � 2
X1
m¼1

Km
R
B

� �
I2m

Lo
B

� �

Im
R
B

� � : ð13:74Þ

5.2. Impermeable boundary: Eq. 3.39 yields

Ro ¼ K0
ro
B

� �
þ

K1
R
B

� �
I20

Lo
B

� �

I1
R
B

� � þ 2
X1
m¼1

Kmþ 1
R
B

� �
þKm�1

R
B

� �

Imþ 1
R
B

� �
þ Im�1

R
B

� � I2m
Lo
B

� �
;

ð13:75Þ

where I0 �ð Þ and I1 �ð Þ are modified Bessel functions of the first kind of the zero and
the first order; K0 �ð Þ and K1 �ð Þ are modified Bessel functions of the second kind of
the zero and the first order; Im �ð Þ and Km �ð Þ are modified Bessel functions of the first
and the second kind of the mth order) (see Appendix 7.13).
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Appendix 1
Hydraulic Characteristics

A major objective of pumping tests is to evaluate the hydraulic characteristics of
aquifers based on data on groundwater-level changes.

This appendix describes the main hydraulic characteristics, their denotations,
and dimensions, and provides brief definitions.

Hydraulic conductivity, k, m/d: horizontal kr; vertical kz. This is the rate of
fluid flow under unit head gradient; this characteristic depends on pore-space
geometry and the fluid’s hydrodynamic properties, i.e., the density and viscosity; it
characterizes the ability of the soil to pass a fluid.

The hydraulic conductivity is evaluated as:

k ¼ k0qwg
l

; ðA1:1Þ

where k0 is the permeability, i.e., the ability of a porous medium to pass a liquid,
gas, or fluid mixture under pressure gradient; the permeability depends on the
properties of the moving fluid and pore-space geometry, m2; qw is water density,
kg/m3; g is the acceleration of gravity, m/s2; l is fluid dynamic viscosity, kg=ðm�sÞ.

The hydraulic conductivity is a proportionality coefficient between the Darcy
flux and the head gradient. This relationship is expressed by Darcy’s law (Darcy
1856):

v ¼ k
DH
L

; ðA1:2Þ

where v is specific discharge (Darcy flux), m/d; DH is head difference, m; L is flow
path length, m.

With the Darcy flux expressed as the ratio of flow rate to flow cross-section area:

v ¼ Q
w
; ðA1:3Þ

© Springer International Publishing Switzerland 2017
L.N. Sindalovskiy, Aquifer Test Solutions, DOI 10.1007/978-3-319-43409-4

285



Darcy’s law becomes:

Q ¼ kw
DH
L

; ðA1:4Þ

where Q is the volumetric flow rate, m3/d; w is flow cross-section area, m2.
In stratified (multilayer) aquifers with hydraulic conductivity values of indi-

vidual layers varying no more than five–ten-fold, the mean hydraulic conductivity
for flow along the bedding can be evaluated as:

�kr ¼
Xn
i¼1

kimi

,Xn
i¼1

mi; ðA1:5Þ

and for flow perpendicular to the bedding, as:

�kz ¼
Xn
i¼1

mi

,Xn
i¼1

mi=ki; ðA1:6Þ

where n is the number of layers; ki is the hydraulic conductivity of the ith layer,
m/d; mi is the thickness of the ith layer, m.

Transmissivity, T , m2/d. The discharge per cross-section of unit width in an
aquifer of given thickness. It is defined as:

T ¼ km; ðA1:7Þ

where m is aquifer thickness, m.
In the case of a multilayer aquifer comprising n layers, the transmissivity is

calculated as:

T ¼
Xn
i¼1

kimi: ðA1:8Þ

In the case of irregular horizontal heterogeneity, the mean transmissivity is
defined as:

�T ¼
Xn
i¼1

TiFi

,Xn
i¼1

Fi; ðA1:9Þ

where Ti is the transmissivity of the ith zone, m2/d; Fi is the area of the ith zone, m
2.

Specific storage, Ss, 1/m. This is the change in water volume per unit rock or
sediment (aquifer materials) volume per unit head change. The specific storage is
defined as:
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Ss ¼ qwg
n
E
þ 1� nð Þac

h i
¼ qwg nCw þ 1� nð Þac½ �; ðA1:10Þ

where n is porosity; ac is aquifer compressibility coefficient, a characteristic of the
rate of pore volume decrease under increasing load, 1/Pa; E ¼ 1=Cw � 2:2� 109

Pa is Young’s modulus, Pa; Cw is water compressibility, the relative change in
water density per unit change of pressure, Pa−1.

For specific storage, the equality (Eq. A1.10) can also be written as

Ss ¼ qwg nCw þ a½ �; ðA1:11Þ

where a ¼ 1� nð Þac is aquifer matrix compressibility, 1/Pa.
Storage coefficient, S, dimensionless. This is a characteristic of changes in

aquifer water content under its deformation at changes in the rock-stress state under
the effect of hydrodynamic factors, such as head change, water withdrawal, etc. It is
defined as:

S ¼ Ssm: ðA1:12Þ

The storage coefficient can also be expressed in terms of aquifer transmissivity
and hydraulic diffusivity:

S ¼ T=a ¼ km=a: ðA1:13Þ

For a multilayer aquifer, comprising n layers, the storage coefficient is calculated
as:

S ¼
Xn
i¼1

Ssimi; ðA1:14Þ

where Ssi is the specific storage of the ith layer, 1/m.
Specific yield, Sy, dimensionless. The ratio of a change in water volume in the

zone of unconfined flow to a change in the volume of this zone.
Hydraulic diffusivity, a, m2/d. This is a characteristic of the rate of changes in

the head (hydrostatic pressure) in an aquifer. It is defined as:

a ¼ T=S ¼ km=S ¼ k=Ss; ðA1:15Þ

Hydraulic diffusivity for an unconfined aquifer, a, m2/d. This characteristic
reflects the propagation velocity of perturbations in unconfined aquifers. It is
defined as:

a ¼ k�m=Sy; ðA1:16Þ

where �m is the mean water-saturated thickness of an unconfined aquifer, m.

Appendix 1: Hydraulic Characteristics 287



Leakage factor, B, m. This is an integral characteristic, depending on the
transmissivity of the pumped aquifer as well as the hydraulic conductivity and the
thickness of aquitards. The lesser is B, the more intense the leakage, other condi-
tions being the same. The value of the leakage factor is governed by the number of
source layers. When there is a single source layer, and water enters through a single
aquitard, overlying or underlying the aquifer (see Fig. 3.2b),

B ¼
ffiffiffiffiffiffiffiffi
Tm0

k0

r
; ðA1:17Þ

while in the case of two source layers, when water enters through two aquitards,
underlying and overlying it (see Fig. 3.2e),

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tm0m00

k0m00 þ k00m0

r
; ðA1:18Þ

where T is pumped aquifer transmissivity, m2/d; k0; k00 are the hydraulic conduc-
tivities of the aquitards, m/d; m0; m00 are aquitard thicknesses, m.

Coefficient of vertical anisotropy, v, dimensionless. The square root of the
ratio of the vertical (kz) to horizontal (kr) hydraulic conductivities is:

v ¼
ffiffiffiffiffiffiffiffiffiffi
kz=kr

p
: ðA1:19Þ

Retardation coefficient, DL, m. A generalized hydrogeological characteristic
introduced to account for streambed permeability. This can be calculated as:

DL ¼ k
k0
m0: ðA1:20Þ

Here k is aquifer hydraulic conductivity, m/d; k0; m0 are the hydraulic conduc-
tivity (m/d) and the thickness (m) of semipervious stream bed.
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Appendix 2
Wellbore Storage, Wellbore Skin,
and Shape Factor

The change in groundwater level in an aquifer reflects the effect of both the
hydraulic characteristics of the aquifer under study and pumping-well design:
wellbore radius, the extent of well penetration, and wellbore state (Fig. A2.1). In
some analytical solutions (see Parts I and II), this is accounted for by specifying the
wellbore storage and skin.

Wellbore storage, which depends on the casing radius and screen radius and
length, can be expressed by a dimensionless parameter (Moench 1997):

WD ¼ r2c
2r2wSslw

; ðA2:1Þ

where lw is the length of the pumping-well screen, m; rw; rc are the radiuses of the
pumping well and its casing, respectively, m; Ss is specific storage, 1/m.

The duration of the wellbore-storage effect on water-level changes in the
pumping well during pumping depends on the aquifer transmissivity and casing
radius (see Eq. A4.20).

Fig. A2.1 Scheme for calculating wellbore storage and wellbore skin
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Wellbore skin is determined by wellbore radius, as well as skin hydraulic
conductivity and thickness (Moench 1997):

Wskin ¼ kmskin

rwkskin
; ðA2:2Þ

where k is aquifer hydraulic conductivity, m/d; kskin; mskin are the hydraulic con-
ductivity (m/d) and thickness (m) of wellbore skin, respectively.

The effect of delayed response of observation well or piezometer on drawdown
is lesser (Moench 1997):

Table A2.1 Formulas for shape factor

No Conceptual model Shape factor, m

1
F ¼ 2p lp

ln lp=vrp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lp=vrp

� �2q� �

2 F ¼ 4rp

3 F ¼ 2p rp

4
F ¼ 2pm

ln 2m=vrp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m=vrp

� �2q� �

5
F ¼ 2p lp

ln lp=2vrp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lp=2vrp

� �2q� �

6 F ¼ 5:5rp

7 F ¼ 4prp

8
F ¼ p lp þm

� �
ln m=vrp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m=vrp

� �2q� �

lp is the screen length of the observation well, m; m is aquifer thickness or the initial
water-saturated thickness of an unconfined aquifer, m; v ¼ ffiffiffiffiffiffiffiffiffiffi

kz=kr
p

is anisotropy coefficient
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W 0
D ¼ r2p

2r2wSsF
; ðA2:3Þ

where rp is observation well radius, m; F is shape factor (see Table A2.1), m.
Formulas for calculating the shape factor were studied by Forchheimer (1914),

Hvorslev (1951), Aravin and Numerov (1953), etc. The results of these studies are
generalized in Table A2.1(Sunjoto 1994), where the first four conceptual models
refer to wells in a confined aquifer, while the others refer to an unconfined aquifer.
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Appendix 3
Boundary Conditions and Image Wells

This appendix gives schematic pictures of aquifers with groundwater flow bounded
in horizontal or vertical plane. Formulas are given for calculating the distances from
the observation well to image wells to be used in drawdown evaluation. In the case
of combined boundary conditions, incorporating a constant-head and an imper-
meable boundary (see, for example, Fig. A3.3c), the distances from wells to the
boundary (Lw and Lp) are taken to be those to the constant-head boundary.

1. Semi-infinite Aquifer
In the case of semi-infinite aquifers, two types of boundary conditions are

considered: a constant-head boundary and an impermeable boundary (Fig. A3.1).
The horizontal distance from the observation to the image well (Fig. A3.2),

obtained by reflecting the pumping well about a linear planar boundary is calculated
by the following relationship:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw þ Lp
� �2 þ y2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4LwLp

q
; ðA3:1Þ

where Lp; Lw are the distances from the observation and pumping wells to the
planar boundary, m; r is the radial distance from the pumping to the observation
well, m; y is the projection of the distance from the observation to the pumping well
onto the boundary line (m) and is defined as

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � Lw � Lp

� �2q
: ðA3:2Þ

Fig. A3.1 Schematic planar
view of a semi-infinite aquifer
with a a constant-head
boundary and b an imperme-
able boundary. Circles are
pumping wells, and dots are
observation wells
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For calculating the drawdown in the pumping well, the distance to the image
well is taken equal to twice the distance to the boundary: q ¼ 2Lw.

2. Strip Aquifer
In the case of aquifers bounded in the horizontal plane by two parallel straight

lines, the following variants of boundary conditions are considered: two
constant-head boundaries, two impermeable boundaries, and combined boundary
conditions (Fig. A3.3).

The number of reflections of the pumping well from the parallel boundaries is
infinite (Fig. A3.4). In analytical solutions for a strip aquifer, the number of
reflections is replaced by a finite number, such that its further increase has no effect
on the calculation accuracy.

The horizontal distances from the observation well to the image wells
(Fig. A3.4) obtained by reflecting the pumping well about the left (q j

1) and the right
(q j

2) boundaries are evaluated by the following relationships:

q j
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lp þ Lw þ

Xj

j0¼2;4;...

2L0w þ
Xj

j0¼3;5;...

2Lw

 !2

þ y2

vuut ; ðA3:3Þ

Fig. A3.2 Horizontal distances to the boundary and to an image well. The signs of discharges
over the image well: minus is for the constant-head boundary, and plus is for the impermeable
boundary

Fig. A3.3 Schematic planar view of a strip aquifer. a Two constant-head boundaries; b two
impermeable boundaries; c combined boundary conditions
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q j
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0p þ L0w þ

Xj

j0¼2;4;...

2Lw þ
Xj

j0¼3;5;...

2L0w

 !2

þ y2

vuut ; ðA3:4Þ

where j is the number of an image well; j0 is the number of a reflection in deter-
mining the distance to the jth image well; L is the width of the strip aquifer, m;
L0p ¼ L� Lp, L0w ¼ L� Lw are the distances from the observation and image well to
the second boundary of the strip aquifer, m.

3. Wedge-Shaped Aquifer
In the case of a wedge-shaped aquifer (as well as for the strip aquifer), three

variants of boundary conditions are considered: two constant-head boundaries, two
impermeable boundaries, and combined boundary conditions (Fig. A3.5).

The number of image wells used in drawdown calculation in wedge-shaped
aquifers is determined by the angle h between the two intersecting boundaries
(Fig. A3.5). The general rule for determining the number of reflections (i.e., the
number of image wells) is formulated as:

n ¼ 360=h� 1; ðA3:5Þ

where h is the angle between two intersecting boundaries, degrees.

Fig. A3.4 Schematic planar view of a strip aquifer with horizontal distances from the observation
well to image wells. The first, second, and third signs of image well discharges under the wells are
for a constant-head boundary, impermeable boundary, and combined boundary conditions,
respectively

Fig. A3.5 Schematic planar view of a wedge-shaped aquifer. a Two constant-head boundaries;
b two impermeable boundaries; c combined boundary conditions
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Before applying Eq. A3.5, one has to check whether the angle is a multiple of
180° (for constant-head boundary or impermeable boundary conditions) or 90° (for
combined boundary conditions). Otherwise, the nearest angle satisfying this
requirement is used (see Table A3.1).

In the case of combined boundary conditions, the angles of 4°, 20°, and 60° are
excluded from those given in Table A3.1.

The positions of wells relative to aquifer boundaries can be characterized by the
distance to the vertex of the angle (the intersection point of the two boundaries) and
the distance to one of the boundaries (Fig. A3.6a, c). However, for practical cal-
culations, it is handier to use the distances from a well to both boundaries
(Fig. A3.6a).

The order and scheme of reflection of imagen wells about two intersecting
boundaries are given by Ferris et al. (1962). In that study, the reflected wells are
numbered from the pumping well counterclockwise (Fig. A3.6a). The formulas
used to evaluate the distances to image wells are as follows:

qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAw cos hj � LAp cos hp
� �2 þ LAw sin hj � LAp sin hp

� �2q
; ðA3:6Þ

hj ¼ hw þ 2
Xj

i¼1;3;...

h� hwð Þþ 2
Xj

i¼2;4;...

hw; ðA3:7Þ

Table A3.1 Determining the number of image wells

h (degree) 1 2 3 4 5 6 9 10 15 20 30 45 60 90

n 359 179 119 89 71 59 39 35 23 17 11 7 5 3

Fig. A3.6 Schematic planar views of a wedge-shaped aquifer. a, b Horizontal distances from the
observation well to image wells in the case of a an arbitrary angle between the boundaries and b an
aquifer-quadrant; c scheme for calculating the distances to image wells. The first, second, and third
signs at the image wells are for constant-head, impermeable, and combined boundary conditions,
respectively
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hw ¼ arcsin Lw=LAwð Þ; hw ¼ arctan
sin h

L0w=Lw þ cos h
; ðA3:8Þ

hp ¼ arcsin Lp=LAp
� �

; hp ¼ arctan
sin h

L0p=Lp þ cos h
; ðA3:9Þ

LAw ¼ Lw= sin hw; LAp ¼ Lp= sin hp; ðA3:10Þ

where LAp; LAw are the distances from the observation and pumping wells to the
vertex of angle, determined by the equalities (Eq. A3.10), m; Lp; Lw are the dis-
tances from the observation and pumping wells to the first boundary, m; L0p; L

0
w are

the distances from the observation and pumping wells to the second boundary, m; hj
is an angle, characterizing the position of the jth image well and determined by
Eq. A3.7, degrees; hp; hw are angles characterizing the position of observation and
pumping wells and determined by Eqs. A3.8 and A3.9, degrees.

For an aquifer-quadrant (Fig. A3.6b), the evaluation of distances to the three
image wells is simpler:

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw � Lp
� �2 þ L0w þ L0p

� �2r
;

q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw þ Lp
� �2 þ L0w þ L0p

� �2r
;

q3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw þ Lp
� �2 þ L0w � L0p

� �2r
:

ðA3:11Þ

4. U-Shaped Aquifer
A U-shaped aquifer has two parallel semi-infinite linear boundaries and one

limited linear boundary, perpendicular to the parallel boundaries. In the case of
U-shaped aquifers, the following boundary conditions are considered: all bound-
aries are constant-head (Fig. A3.7a); parallel constant-head boundaries and
impermeable perpendicular boundary (Fig. A3.7b); impermeable parallel bound-
aries and constant-head perpendicular boundary (Fig. A3.7c); all boundaries are
impermeable (Fig. A3.7d); one of the parallel boundaries is constant-head, and the
other is impermeable; the perpendicular boundary is constant-head or impermeable
(Fig. A3.7e, f).

The calculation of the drawdown in pumping tests in a U-shaped aquifer
involves two infinite rows of image wells. The distances from the image wells,
obtained by reflection from the parallel boundaries (see the first row of image wells,
Fig. A3.8), are evaluated with the use of solutions (Eqs. A3.3 and A3.4) for a strip
aquifer, where y is calculated by Eq. A3.2 or by the difference of the distances to
the perpendicular boundary:
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y ¼ LUw � LUp
		 		 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � Lw � Lp
� �2q

: ðA3:12Þ

The distances to the image wells of the second row (Fig. A3.8), reflected from
the left q j

U1 and right q j
U2 boundaries, are evaluated as

Fig. A3.7 Schematic planar view of a U-shaped aquifer. a, b Constant-head parallel boundaries;
c, d impermeable parallel boundaries; e, f mixed boundary conditions on parallel boundaries

Fig. A3.8 Schematic planar view of a U-shaped aquifer with horizontal distances from the
observation well to image wells. The signs under each image well in the first row refer to parallel
constant-head boundaries (the first sign), impermeable boundaries (the second sign), and mixed
boundary conditions (the third sign). The discharge signs for the second row are the same in the
case of an impermeable perpendicular boundary and change to the opposite for a constant-head
boundary
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q j
U1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lp þ Lw þ

Xj

j0¼2;4;...

2L0w þ
Xj

j0¼3;5;...

2Lw

 !2

þ LUw þ LUp
� �2

vuut ; ðA3:13Þ

q j
U2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0p þ L0w þ

Xj

j0¼2;4;...

2Lw þ
Xj

j0¼2;4;...

2L0w

 !2

þ LUw þ LUp
� �2

vuut ; ðA3:14Þ

where j is the number of the image well to which the distance is evaluated; j0 is the
reflection number in evaluating the distance to the jth image well; Lp; Lw are the
distances from the observation and pumping well to the parallel boundary,
respectively, m; L0p; L

0
w are the distances from the observation and pumping well to

the second parallel boundary, respectively, m; LUp; LUw are the distances from the
observation and pumping well to the perpendicular boundary, respectively, m.

The distance from the pumping well to the image well reflected from the per-
pendicular boundary can be evaluated as

qU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw � Lp
� �2 þ LUw þ LUp

� �2q
: ðA3:15Þ

5. Rectangular Aquifer
The aquifer is a rectangular domain. In the case of a rectangular aquifer, six

variants of boundary conditions are considered (Fig. A3.9).

Fig. A3.9 Schematic planar view of a rectangular aquifer. a Two pairs of parallel constant-head
and impermeable boundaries; b all boundaries are constant head; c all boundaries are imperme-
able; d three boundaries are constant-head and one is impermeable; e two pairs of perpendicular
constant-head and impermeable boundaries; f one constant-head and three impermeable
boundaries
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The reflection of the pumping well about two pairs of parallel boundaries yields
an infinite number of rows, each containing an infinite number of image wells
(Ferris et al. 1962). In this book, analytical solutions for calculating the drawdown
in a rectangular aquifer based on the effect of image wells are not considered.

6. Circular Aquifer
The circular boundary of an aquifer (Fig. A3.10) implies the presence of one of

two boundary conditions—constant-head boundary or impermeable boundary.
Analytical solutions for aquifer tests in circular aquifers depend on both the
boundary condition and the position of the pumping well relative to aquifer center.

7. Partially Penetrating Well in a Semi-infinite Aquifer
Partially penetrating wells are represented by a point (see Sect. 1.2.2) or linear

(see Sect. 1.3.2) source. The groundwater flow boundaries considered for such
cases include (1) boundaries in the horizontal plane (constant-head or impermeable)
(Fig. A3.11a, b) and (2) an impermeable boundary in the top or bottom of the
aquifer (Fig. A3.11c, d).

Under a conceptual model of point source with a planar boundary (Fig. A3.11a,
b), the distance to the image well is:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4LwLp þ d2

q
; ðA3:16Þ

Fig. A3.10 Schematic planar view of a circular aquifer. a, b Constant-head boundary; c, d im-
permeable boundary; a, c the pumping well coincides with the center of the circular aquifer or b,
d not coincides with it

Fig. A3.11 Scheme for a point source in an aquifer semi-infinite in a, b plane and c, d thickness
with distances between the observation and image wells. a A constant-head boundary in plane;
b an impermeable boundary in plane; c, d an impermeable boundary in c the top and d bottom of
the aquifer
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where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
is the distance between screen centers of the pumping and

observation wells (see Fig. 1.10), m; z is the vertical distance between screen
centers of the pumping and observation wells, m.

In the case of a linear source under such conditions, the distance to the image
well is evaluated by Eq. A3.1, similarly to the case of a fully penetrating well.

When a partially penetrating well is located near the aquifer top or bottom
(Fig. A3.11c, d), then, whatever is the representation of the well (point or linear
source), the distance to the image well is:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ LTp þ LTw

� �2q
or q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ LBp þ LBw

� �2q
; ðA3:17Þ

where LTp; LTw are vertical distances from the aquifer top to screen centers of the
observation and pumping wells, respectively, m; LBp; LBw are the vertical distances
from screen centers of the observation and pumping wells to the aquifer bottom,
respectively, m.

8. Partially Penetrating Well in an Aquifer Bounded in the Horizontal Plane or
Thickness

Partially penetrating wells (linear or point sources) are generally considered in
aquifers bounded in the plane or thickness (Fig. A3.12). In the case of planar
boundaries (e.g., strip aquifer), all boundary conditions given for fully penetrating
wells are taken into account (Fig. A3.3), while in the case of boundaries in
thickness, only impermeable boundaries at the aquifer top and bottom are
considered.

For a point source in a strip aquifer (Fig. A3.12c), the distances to image wells
are:

q j
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lp þ Lw þ

Xj

j0¼2;4;...

2 L� Lwð Þþ
Xj

j0¼3;5;...

2Lw

 !2

þ d2 � Lw � Lp
� �2

vuut ;

ðA3:18Þ

q j
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L� Lp þ Lw

� �þ Xj

j0¼2;4;...

2Lw þ
Xj

j0¼3;5;...

2 L� Lwð Þ
 !2

þ d2 � Lw � Lp
� �2

vuut :

ðA3:19Þ

For a point source in an aquifer bounded in thickness and infinite in the plane
(Fig. A3.12b), the distances to image wells are:
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Fig. A3.12 Schemes for evaluating the distances to image wells for point and linear sources.
a Cross-section for a linear source, the circle, and the dot in the section are the centers of the
pumping and observation wells, respectively; b, c three-dimensional schemes for a point source in
an aquifer limited in b thickness and c the plane. For explanations of discharge signs, see in
Fig. A3.4
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q j
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTp þ LTw þ

Xj

j0¼2;4;...

2LBw þ
Xj

j0¼3;5;...

2LTw

 !2

þ r2

vuut ; ðA3:20Þ

q j
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LBp þ LBw þ

Xj

j0¼2;4;...

2LTw þ
Xj

j0¼3;5;...

2LBw

 !2

þ r2

vuut : ðA3:21Þ

The distances to image wells for a linear source in a strip aquifer are evaluated
similarly to fully penetrating wells by Eqs. A3.3 and A3.4.

The vertical distances from the open part of piezometer or screen center of a
partially penetrating observation well (see Fig. 1.22) to screen centers of image
wells (Fig. A3.12a), obtained by reflection of the pumping well about the top z j1 and
bottom z j2, are:

z j1 ¼ LTp þ LTw þ
Xj

j0¼2;4;...

2LBw þ
Xj

j0¼3;5;...

2LTw; ðA3:22Þ

z j2 ¼ LBp þ LBw þ
Xj

j0¼2;4;...

2LTw þ
Xj

j0¼3;5;...

2LBw: ðA3:23Þ
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Appendix 4
Equations for Universal Screening
Assessments

This appendix gives some simplified relationships that can be helpful for experts in
planning aquifer tests and assessing their results.

1. Transmissivity Evaluation
Aquifer transmissivity is evaluated by the drawdown in the pumping well at the

moment of the pumping-test end, given the discharge of the pumping well (Logan
1964). In the case of a confined aquifer, the transmissivity is evaluated by an
approximate formula:

T � 1:22Q=sw; ðA4:1Þ

where T is aquifer transmissivity, m2/d; Q is the constant discharge rate of the
pumping well, m3/d; sw is the drawdown in the pumping well at the end of the
pumping test, m.

In the case of an unconfined aquifer, the hydraulic conductivity is evaluated as:

k � 2:43
Q

sw 2m� swð Þ ; ðA4:2Þ

where k is the hydraulic conductivity, m/d; m is the initial water-saturated thickness
of the unconfined aquifer, m.

Equations A4.1 and A4.2 refer to fully penetrating pumping wells, located in an
aquifer of infinite lateral extent (see Sects. 1.1.1 and 2.1). Such an estimate is rough
and does not substitute for the need of the interpretation of the pumping tests by
analytical and graphical methods.

When two observation wells are available, the transmissivity is calculated by the
Thiem formula (Thiem 1906):

T ¼ Q
2p s1 � s2ð Þ ln

r2
r1
; ðA4:3Þ

where s1; s2; r1; r2 are the drawdowns (s) and distances to the pumping well (r)
for the first and second observation wells, respectively, m.
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Equation A4.3 corresponds to a confined aquifer. In an unconfined aquifer, the
hydraulic conductivity is calculated as (Dupuit 1863):

k ¼ Q
p � s1 2m� s1ð Þ � s2 2m� s2ð Þ½ � ln

r2
r1
: ðA4:4Þ

If drawdown observations are carried out in the pumping well and an obser-
vation well, the variables in formulas (Eqs. A4.3 and A4.4) need to be changed: the
variables with subscript 1 now refer to the drawdown and radius of the pumping
well (s1 ¼ sw, r1 ¼ rw); and those with subscript 2 refer to the observation well
(s2 ¼ s, r2 ¼ r).

By analogy with Eqs. A4.3 and A4.4, formulas can be constructed for calcu-
lating the transmissivity (hydraulic conductivity) by two drawdown values in one
observation well. In this case, we obtain for a confined and an unconfined aquifer,
respectively:

T ¼ Q
4p s1 � s2ð Þ ln

t1
t2
; ðA4:5Þ

k ¼ Q
2p � s1 2m� s1ð Þ � s2 2m� s2ð Þ½ � ln

t1
t2
; ðA4:6Þ

here, s1; s2; t1; t2 are the drawdowns (s) at two moments (t) in the same obser-
vation well.

Equations A4.3–A4.6 are applicable to quasi-steady-state or steady-state flow
regimes.

2. Hydraulic Diffusivity Evaluation
If data on the moment of the start of water-level recovery in an observation well

after pumping test are available, the hydraulic diffusivity of an aquifer is evaluated
by a formula (Maksimov 1979):

a ¼ r2t0
4ts t0 þ tsð Þ ln t0=ts þ 1ð Þ ; ðA4:7Þ

where a is the hydraulic diffusivity, m2/d; r is the distance from the pumping to the
observation well, m; t0 is pumping duration, d; ts is the time elapsed from the end of
pumping to the moment when water level drop changed to level rise, d.

At the common measurement accuracy (1 cm), we will have underestimates of
the hydraulic diffusivity.

3. Radius of Influence of a Pumping Test
The effect of pumping tests depends on aquifer hydraulic diffusivity and on the

time elapsed since the start of perturbation.
In an aquifer of infinite lateral extent, the radius of influence can be approxi-

mately estimated as:
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R � 1:5
ffiffiffiffi
at

p
; ðA4:7Þ

where t is the time elapsed since the start of pumping test, d.
The radius of influence of a pumping test can also be estimated by the draw-

downs in two observation wells in a quasi-steady-state flow period (Maksimov
1959):

lgR ¼ s1 lg r2 � s2 lg r1
s1 � s2

: ðA4:8Þ

Equation A4.8 is applicable to confined aquifers. It was derived from the
drawdown ratio in two observation wells (see Eq. 12.13) where the well-function is
replaced by its logarithmic approximation (see Eqs. 1.11 and 1.12). By analogy, for
an unconfined aquifer:

lgR ¼ s1 2m� s1ð Þ lg r2 � s2 2m� s2ð Þ lg r1
s1 2m� s1ð Þ � s2 2m� s2ð Þ ðA4:9Þ

and for a confined-unconfined aquifer:

lgR ¼
2H � mð Þm� H � s1ð Þ2

h i
lg r2 � 2H � mð Þm� H � s2ð Þ2

h i
lg r1

H � s2ð Þ2� H � s1ð Þ2 ;

ðA4:10Þ

where H is the initial head, measured from aquifer bottom (see Fig. 2.2b), m.
The radius of the zone of the quasi-steady-state flow regime (RQ) is calculated

using approximations of the well-function W uð Þ (see Appendix 7.1), for which the

function can be assumed linear at u ¼ r2

4at
\0:05. This gives an estimate of the

distance from the pumping well to the observation point, within which the flow
regime is quasi-steady-state, i.e., the radius of its occurrence is:

RQ � 0:45
ffiffiffiffi
at

p
: ðA4:11Þ

The radius of influence of a slug test (see Sect. 9.1) is insignificant compared
with pumping tests. For a slug test in a confined aquifer, the radius of influence can
be calculated as (Guyonnet et al. 1993):

R � Arw
Tt
Sr2w

� �n

; ðA4:12Þ
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it cannot exceed a maximal value:

Rmax � Brw
r2c

2Sr2w

� �m

; ðA4:13Þ

where T ; S are the aquifer transmissivity (m2/d) and storage coefficient (dimen-
sionless); rw; rc are the radiuses of the well and its casing, m; A; B; n; m are
dimensionless constants depending on the accuracy of estimating the radius of
influence (see Table A4.1).

Slug tests can also provide the time tmax, after which the radius of influence stops
increasing. The maximal time is evaluated based on the reduced time:

�t � Ttmax

Sr2w

� �n
 r2c
2Sr2w

� �m

: ðA4:14Þ

Whence:

tmax � �t1=n
r2c

2Sr2w

� �m=nSr2w
T

; ðA4:15Þ

where �t is a dimensionless constant (see Table A4.1).
The calculations in (Eqs. A4.12, A4.13, and A1.15) depend on the estimation

accuracy of the radius of influence (Table A4.1), i.e., 1, 5, or 10 % of the nor-
malized water-level recovery sw=s0 (where sw; s0 are level recovery in the tested
well and the initial perturbation, respectively, m).

For calculating the radius of influence of a slug test in low-permeability rocks by
the pressure-pulse method (see Sect. 9.2), the casing radius is to be replaced by
Eq. 9.6.

4. Time Criteria
1. Equation A4.11 readily yields an estimate of the start of the quasi-steady-state

period in an aquifer of infinite lateral extent at distance r from the pumping well
(see Fig. 12.9):

Table A4.1 The values of dimensionless parameters at different calculation accuracies

Parameter Accuracy

1 % 5 % 10 %

A 3.54 2.74 2.36

B 8.37 3.53 2.32

n 0.462 0.434 0.410

m 0.495 0.468 0.440
�t 2.5 1.3 1.0
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t � 5r2=a: ðA4:16Þ

2. The moment of the start of the steady-state period during pumping near a
constant-head boundary (see Sect. 1.1.2.1) depends on the hydraulic diffusivity and
the distances from the pumping and observation wells to the boundary. For the
observation well, it is defined as (see Fig. 12.12a)

t � 5 r2 þ 4LwLp
� �

=a ðA4:17Þ

and for the pumping well:

t � 20L2w=a; ðA4:18Þ

where Lp; Lw are the distances from the observation and pumping wells to the
planar boundary, m; r is the radial distance from the pumping to the observation
well, m.

3. In the case of an impermeable boundary, Eq. A4.17 gives the time of the start
of quasi-steady-state period (see Sect. 1.1.2.2 and Fig. 12.12b).

Equation A4.17 was obtained by linearization of the well-function W uð Þ (see
Appendix 7.1), which enters the second term in Eqs. 1.13 and 1.15.

4. The time of the onset of steady-state period during pumping in a leaky aquifer
(see Sect. 3.1.1) depends on the hydraulic diffusivity and leakage factor. For the
ratio r=B\2,

t � 5B2=a; ðA4:19Þ

where B is the leakage factor (see Eq. A1.17 or Eq. A1.18), m. Such an estimate is
based on an approximation of the well-function for leaky aquifers W u; bð Þ (see
Table A7.3).

5. Papadopulos and Cooper (1967) showed that the function describing the
drawdown in a large-diameter well F u; bð Þ (see Appendix 7.9) is equal, under some
conditions, to the well-function W uð Þ: u=b\10�3. This yields the time after which
the pumping well storage can be neglected (see Fig. 12.11a):

t ¼ 250
r2c
T
; ðA4:20Þ

where rc is pumping well casing radius, m.

5. Recharge
Recharge can have a contribution (commonly insignificant) to water-level

changes in an aquifer during aquifer tests. In the case of constant-rate recharge,
water-level change in a confined aquifer during pumping from a single well is
(Bochever 1976):
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s ¼ Q
4pT

W
r2S
4Tt

� �
� e t

S
; ðA4:21Þ

where e is recharge rate, m/d.
Equation A4.21 suggests that the drawdown increases to reach a maximum, after

which it starts decreasing. The moment of maximal drawdown can be calculated as

tmax ¼ QS
4peT

¼ Q
4pe a

: ðA4:22Þ

Equation A4.21 and the Theis solution (Eq. 1.1) differ by:

Ds ¼ e t
S
¼ e ta

T
: ðA4:23Þ

In the case of unconfined aquifers, the storage coefficient (S) in this formula is to
be replaced by the specific yield (Sy). Formula (Eq. A4.23) provides an estimate of
the effect of recharge on water-level changes during pumping tests. It also relates
the recharge rate, level changes in an observation well, and the hydraulic con-
ductivity of an aquifer without a pumping test (Bochever et al. 1969).

310 Appendix 4: Equations for Universal Screening Assessments

http://dx.doi.org/10.1007/978-3-319-43409-4_1


Appendix 5
Application of Computer Programs
for Analysis Aquifer Tests

This appendix describes the known numerical–analytical computer programs
designed to evaluate the drawdown in aquifers during pumping tests under complex
hydrogeological conditions with additional complicating factors such as wellbore
storage, wellbore skin, an inclination of the pumping well, etc. The description is
supplemented by examples of input files and interpretation of output files. The
algorithms of the presented programs are incorporated into the calculations of basic
analytical relationships with the ANSDIMAT software system (Sindalovskiy 2014).

All programs calculate the drawdown in aquifers of infinite lateral extent during
aquifer tests with a constant pumping discharge rate.

Appendix 5.1 Program DELAY2

The program was developed in 1986 by S.P. Neuman. The description of input
parameters (Table A5.1) is based on the code DELAY2.FOR and publications by
the program’s author (Neuman 1972–1975).

Program application features (Fig. A5.1) include:

• the aquifer is homogeneous, vertically anisotropic, and unconfined;
• the pumping well is partially penetrating;
• the dimensionless drawdown is evaluated in a partially penetrating observation

well or piezometer;
• the wellbore radius is assumed to be infinitely small, i.e., the wellbore storage is

neglected.

Input. The general format of input file for calculating a single value:
SIGMA, TS, BETA, PD, DD, ZD, ZD1, ZD2
Input-file format for calculating the average drawdown in observation well:
SIGMA, TS, BETA, PD, DD, , ZD1, ZD2
Input-file format for calculating the drawdown in a piezometer:
SIGMA, TS, BETA, PD, DD, ZD

© Springer International Publishing Switzerland 2017
L.N. Sindalovskiy, Aquifer Test Solutions, DOI 10.1007/978-3-319-43409-4

311



Here, the input file consists of a single line; however, for running the program in
this case, a blank line is to be added to the end of the input file.

Output. After execution of the program, the value of the function—an estimate
of the integral in Eq. 2.1—will be written in the output file (see parameter AVRG in
the output file).

Fig. A5.1 Schematic dia-
gram to problem solution with
DELAY2 program

Table A5.1 Dimensionless input parameters of DELAY2 program

Parameter Formula Description

SIGMA S=Sy Ratio of storage coefficient to specific yield

TS krmt
Sr2

Dimensionless time with respect to storage coefficient

BETA vr=mð Þ2 Dimensionless distance

PD zw1=m Ratio of the distance from the initial water table to the bottom of
perforations in the pumping well to the initial saturated-aquifer
thickness

DD zw2=m Ratio of the distance from the initial water table to the top of
perforations in the pumping well to the initial saturated-aquifer
thickness

ZD m� LTp
m

Ratio of the vertical distance from the bottom of aquifer to the
observation point to the initial saturated-aquifer thickness; leave
blank if you want the average drawdown from ZD1 to ZD2

ZD1 m� zp1
m

Ratio of the vertical distance from the bottom of aquifer to the
bottom of perforations in the observation well to the initial
saturated-aquifer thickness; leave blank if you want the drawdown at
a point

ZD2 m� zp2
m

Ratio of the vertical distance from the bottom of aquifer to the top of
perforations in the observation well to the initial saturated-aquifer
thickness; leave blank if you want drawdown at a point

In the case of a fully penetrating pumping well (zw1 ¼ m, zw2 ¼ 0): PD = 1, DD = 0
In the case of a fully penetrating observation well (zp1 ¼ m, zp2 ¼ 0): ZD1 = 0, ZD2 = 1
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Example. Calculating the average drawdown in a partially penetrating obser-
vation well and the drawdown in a piezometer. The input data for this problem are
given in Table A5.2.

Table A5.3 gives dimensionless parameters, evaluated by formulas in
Table A5.1 with input data in Table A5.2.

An example of input file for calculating the average drawdown in an observation
well:

2.0e-3, 8.0e5, 1.25e-3, 0.8, 0.5, , 0.55, 0.75
The output file will contain the dimensionless drawdown AVRG = 5.16310.

An example of input file for calculating the drawdown in a piezometer:
2.0e-3, 8.0e5, 1.25e-3, 0.8, 0.5, 0.65

The output file will contain the dimensionless drawdown AVRG = 4.92693.
The obtained values can be used to evaluate the drawdown so:

s ¼ Q
4pkrm

AVRG:

Comment. For calculating the drawdown in a piezometer, the 274th line of the
source code (DELAY2.FOR)

IF(DZD2 .LT.0.) DDD=DCOS(B*DZD)
is to be replaced by

IF(DZD2 .LE.0.) DDD=DCOS(B*DZD)

Table A5.2 Input data for calculating the drawdown in an unconfined aquifer

Parameter Value Description

m 20 Initial water-saturated thickness, m

r 1 Distance from the pumping to the observation well (or piezometer), m

t 1 Time elapsed from the start of pumping, d

zw1; zw2 16, 10 Distance from the initial water table to the bottom and top of
pumping-well screen, m

zp1; zp2 9, 5 Distance from the initial water table to the bottom and top of
observation-well screen, m

LTp 7 Distance from the initial water table to the open part of the piezometer,
m

kr ; kz 4, 2 Hydraulic conductivities in the horizontal and vertical direction,
respectively, m/d

S 0.0001 Storage coefficient, dimensionless

Sy 0.05 Specific yield, dimensionless

Table A5.3 Calculating dimensionless parameters for DELAY2 program

SIGMA TS BETA PD DD ZD ZD1 ZD2

2.0e−3 8.0e5 1.25e−3 0.8 0.5 0.65 0.55 0.75
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Appendix 5.2 Program WTAQ2

The program was developed in 1995 by A.F. Moench. The description of input
parameters (Table A5.4) is based on the code WTAQ2.FOR and publications of the
program’s author (Moench 1993, 1996).

Program application features (Fig. A5.2) include:

• the aquifer is homogeneous, vertically anisotropic, unconfined or confined;
• the pumping well is fully or partially penetrating;
• in an unconfined aquifer, gradual drainage at the water table can be taken into

account;
• the drawdown (or dimensionless drawdown) is calculated in a fully or partially

penetrating observation well or piezometer;
• the wellbore radius is assumed to be infinitely small, i.e., the wellbore storage is

neglected.

Input. Input-file format for calculating a single value (the file contains six lines):

Output. After execution of the program, the value of the function, in the case of
dimensionless output (IA = 0), or the drawdown, in the case of dimensional output
(IA = 1), will be written into the output file. The denotation of the calculated
parameter in the output file depends on aquifer type and on whether the output is
dimensional (Table A5.5 ).

Example. Calculating the average drawdown in a partially penetrating obser-
vation well in an unconfined aquifer. The calculation is carried out in dimensionless
and dimensional form. For the input data for problem solution, see Table A5.2. In
the case of dimensional form, the discharge rate of the pumping well is to be
specified—Q = 100 m3/d. Dimensionless parameters based on formulas in
Table A5.4 and input data (see Table A5.2) are given in Table A5.6.

Example of input file for dimensionless output: Input-file format:

1.6e3 0 1 0
1.0e10 2.0e-3 0.5 1
0.8 0.5 0
1.0e-6 1.0e-10 1.0e-15 2000. 8
0.0 0.0 0.0 0.0 0
0.05 0.0 0.55 0.75 0

TDYLAST NLC NOX KT
ALPHA SIGMA XKZKR IWT
XLD XDD IPWS
RERRH RERRNR RERRSUM XMAX NS
AS AR AQ AT IA
R_OVER_B ZD ZD1 ZD2 IOWS
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Table A5.4 Input parameters for WTAQ2 program

Parameter Formula Description

Line 1

TDYLAST krmt
Syr2

Largest value of dimensionless time. For calculating a single
value in an unconfined aquifer set TDYLAST = TDY; for a
confined aquifer, in this case TD ¼ krmt=ðSr2Þ

NLC Number of log cycles on TD scale; for calculating a single value,
NLC = 0

NOX Number of (equally spaced) points on TD scale; for calculating a
single value, NOX = 1

KT Number of beta type curves, the maximum allowable value of KT
is 6; for calculating a single value, KT = 0

Line 2

ALPHA amSy
kz

Value of dimensionless ALPHA, let ALPHA = 1.0e10 for
instantaneous release of water from overlying unsaturated zone;
otherwise, ALPHA is to be specified with the use of the presented
formula, where a can be found from Eq. 2.15 or Eq. 2.16

SIGMA S=Sy Ratio of storage coefficient to specific yield; for a confined
aquifer, the value of 1 can be used

XKZKR kz=kr Ratio of vertical to horizontal hydraulic conductivity

IWT 0 (confined aquifer), 1 (unconfined aquifer)

Line 3

XLD zw1=m Position of the bottom of pumped-well screen; in the case of fully
penetrating well (IPWS = 1), the value of 0 can be used

XDD zw2=m Position of the top of pumped-well screen; in the case of fully
penetrating well (IPWS = 1), the value of 0 can be used

IPWS 0 (partially penetrating pumped well), 1 (fully penetrating pumped
well)

Line 4

RERRH Relative error criterion for Hantush convergence (1.0e−6)

RERRNR Relative error for Newton–Raphson iteration and summation
(1.0e−10)

RERRSUM Convergence criterion for the summation (1.0e−15)

XMAX Maximum number of terms in summation (1000–4000)

NS Number of terms used in the Stehfest algorithm, this must be an
even number, the value of which depends upon computer
precision (8); if results are numerically unstable, NS can be
reduced to 6 (or even 4); precision will be reduced, however, and
results should be checked for accuracy

Line 5

AS S Storage coefficient; for dimensionless output (IA = 0), 0 can be
used

AR r Radial distance to observation point, L; for dimensionless output
(IA = 0), 0 can be used

AQ Q Pumping rate, L3/T; for dimensionless output (IA = 0), 0 can be
used

(continued)
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Fig. A5.2 Schematic diagrams to the solution of the problem with WTAQ2 program.
a Unconfined aquifer with unsaturated zone; b confined aquifer

Table A5.4 (continued)

Parameter Formula Description

AT krm Transmissivity in radial direction, L2/T; for dimensionless output
(IA = 0), 0 can be used

IA 0 (dimensional quantities not wanted), 1 (dimensional quantities
wanted)

Lines 6+—up to 6 lines; for the calculation of a single value, do not repeat this line

R_OVER_B r=m Radial distance divided by aquifer thickness

ZD m� LTp
m

Normalized position of piezometer measured from base of
aquifer; in the case of an observation well, 0 can be used

ZD1 m� zp1
m

Normalized position of the bottom of observation-well screen; in
the case of piezometer and for a fully penetrating observation
well, 0 can be used

ZD2 m� zp2
m

Normalized position of the top of observation-well screen; in the
case of piezometer and for a fully penetrating observation well, 0
can be used

IOWS 0 (partially penetrating observation well), 1 (fully penetrating
observation well), 2 (piezometer)

Table A5.5 Denotations of the calculated parameter in the output file of WTAQ2 program

Parameter Aquifer Output Equation

HD Unconfined Dimensionless Evaluating function (Eq. 2.19)

HANTUSH Confined Dimensionless Evaluating function (Eq. 1.107)

DRAWDOWN Unconfined Dimensional Drawdown evaluation (Eq. 2.19)

DRAWDOWN Confined Dimensional Drawdown evaluation (Eq. 1.107)

Table A5.6 Evaluating dimensionless parameters of program WTAQ2

TDYLAST SIGMA XKZKR XLD XDD ZD1 ZD2 R_OVER_B

1.6e3 2.0e−3 0.5 0.8 0.5 0.55 0.75 0.05
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In the output file, we obtain HD = 5.214D+00. From the obtained value, the
drawdown can be calculated by:

s ¼ Q
4pkrm

HD:

In the output file, we obtain DRAWDOWN = 5.187D-01. This corresponds to
the dimensionless value of HD:

DRAWDOWN ¼ Q
4pkrm

HD:

Appendix 5.3 Program WTAQ3

The program was developed in 1997 by A.F Moench. The description of input
parameters (Table A5.7) is based on the code WTAQ3. FOR and a publication by
the program’s author (Moench 1997).

Program application features (Fig. A5.3) include:

• the aquifer is homogeneous, vertically anisotropic, unconfined or confined;
• the pumping well is fully or partially penetrating;
• wellbore storage and skin are taken into account;
• gradual drainage at the water table in an unconfined aquifer can be taken into

account;
• delayed piezometer response can be included in the analysis;
• the drawdown (or dimensionless drawdown) is evaluated in a fully or partially

penetrating pumping well, observation well, or piezometer.

Input. Input-file format for calculating a single value (the file consists of six
lines):

Example of input file for dimensional output: Input-file format:

1.6e3 0 1 0
1.0e10 2.0e-3 0.5 1
0.8 0.5 0
1.0e-6 1.0e-10 1.0e-15 2000. 8
1.0e-4 1.0 100.0 80.0 1
0.05 0.0 0.55 0.75 0

TDYLAST NLC NOX KT
ALPHA SIGMA XKZKR IWT
XLD XDD IPWS
RERRH RERRNR RERRSUM XMAX NS
AS AR AQ AT IA
R_OVER_B ZD ZD1 ZD2 IOWS
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Table A5.7 Input parameters of WTAQ3 program

Parameter Formula Description

Line 1

TDYLAST krmt
Syr2w

Largest value of dimensionless time. For calculating a single value in
an unconfined aquifer, set TDYLAST = TDY; for a confined aquifer,
TD ¼ krmt=ðSr2wÞ is specified here. For dimensionless calculation in
an observation well (or piezometer), here rw ¼ r

NLC Number of log cycles on TD scale; for calculating a single value,
NLC = 0

NOX Number of (equally spaced) points on TD scale; for calculating a
single value, NOX = 1

KT Number of theoretical curves. The maximum allowable value of KT is
6. The first value computes the drawdown in the pumping well: HWD.
The subsequent values compute in observation wells (or piezometers):
HD. For calculating a single value in the pumping well, KT = 1;
for calculating a single value in an observation well (or piezometer),
KT = 2

Line 2

GAMMA amSy
kz

Value of GAMMA. Set GAMMA = 1.D09 for instantaneous release
of water from the overlying unsaturated zone; otherwise, to specify
GAMMA, use the presented formula, where a can be determined by
Eq. 2.15 or Eq. 2.16

SIGMA S=Sy Ratio of storage coefficient to specific yield; for a confined aquifer,
1 can be used

XKD kz=kr Ratio of vertical-to-horizontal hydraulic conductivity

IWT 0 (confined aquifer), 1 (unconfined aquifer)

Line 3

RWD rw=m Pumped-well radius divided by saturated thickness

WD r2c
2r2wSslw

Dimensionless wellbore-storage parameter (see Eq. A2.1)

SW kmskin

rwkskin

Dimensionless wellbore-skin parameter (see Eq. A2.2)

XLD zw1=m Depth below initial water table to the bottom of pumped-well screen
divided by saturated thickness

XDD zw2=m Depth below initial water table to the top of pumped-well screen
divided by saturated thickness

IPWS 0 (partially penetrating pumped well), 1 (fully penetrating pumped
well)

IPUMP 0 (no computations are made for pumped-well solution),
1 (computations are made for pumped well)

Line 4

RERRNR Relative error for Newton–Raphson iteration and summation
(1.0e−9 to 1.0e−10)

RERRSUM Relative error for summation (1.0e−7 to 1.0e−8)

XMAX Maximum number of terms in summation (3000)
(continued)
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Table A5.8 provides the parameters of the first line of input file for the single
output value.

Output. After execution of the program, the value of function, for dimensional
output (IA = 0), or the drawdown, for dimensional output (IA = 1), will be written
into the output file. The denotation of the calculated parameter in the output file
depends on the type of well and on whether the output is dimensional (Table A5.9).

Table A5.7 (continued)

Parameter Formula Description

NS Number of terms used in the Stehfest algorithm. This must be an even
number, the value of which depends upon computer precision (8) (if
the computer holds 16 significant figures in double precision, let NS =
8–12). Note: if results are numerically unstable, NS can be reduced to
6 (or even 4). Precision will be reduced, however, and results should
be checked for accuracy

Line 5

RATIO_SS Ratio of new value of specific storage to original value in input file.
Set RATIO_SS = 1.0 initially

RATIO_B Ratio of new value of aquifer thickness to initial value. Set RATIO_B
= 1.0 initially

AS S Value of storage coefficient based on initial estimate of saturated
thickness and specific storage; for dimensionless output (IA = 0), 0
can be used

ARW rw Radius of pumped well, L; for dimensionless output (IA = 0), 0 can be
used

AQ Q Pumping rate, L3/T; for dimensionless output (IA = 0), 0 can be used

AT krm Value of transmissivity based on initial estimate of saturated
thickness, L2/T; for dimensionless output (IA = 0), 0 can be used

IA 0 (dimensional quantities not wanted), 1 (dimensional quantities
wanted)

Lines 6 and beyond; for calculating a single value, do not repeat this line

RD r=rw Radial distance divided by pumped-well radius

WDPRIME r2p
2r2wSsF

Piezometer response-time factor, where F is shape factor (see
Eq. A2.3)

XZD LTp=m Depth below initial water table to the center of piezometer divided by
saturated thickness

XZD1 zp1=m Depth below initial water table to the bottom of observation well
divided by saturated thickness

XZD2 zp2=m Depth below initial water table to the top of observation well divided
by saturated thickness

IOWS 0 (partially penetrating observation well), 1 (fully penetrating
observation well), 2 (piezometer)

IDPR 0 (no delayed piezometer response), 1 (delayed piezometer response
included). Note: if IDPR equals 1, it is not necessary that IOWS
equals 0
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Example. Calculating average drawdown in partially penetrating observation
and pumping wells in an unconfined aquifer with wellbore storage taken into
account. The calculation is carried out in a dimensionless (IA = 0) and dimensional
(IA = 1) form. For the input data for solving the problem, see Table A5.2. For
dimensional form, the discharge rate of the pumping well is to be specified—Q =
100 m3/d. Additionally, to take into account the wellbore storage, the radiuses of its
screen and casing are required: rw ¼ 0:1 m, rc ¼ 0:2 m.

Dimensionless parameters based on formulas in Table A5.7 and input data (see
Table A5.2) are given in Table A5.10.

Fig. A5.3 Schematic diagrams for solving the problem in WTAQ3 program. a Unconfined
aquifer with unsaturated zone; b confined aquifer. For the denotations for solving the problem with
wellbore skin taken into account, see Fig. A2.1

Table A5.8 Parameters to be specified in the first line of WTAQ3 program input file

Type of well NLC NOX KT

Pumping well: IPUMP=1 0 1 1

Observation well (or piezometer): IPUMP=0 0 1 2

Pumping and observation well (or piezometer): IPUMP=1 0 1 2

Table A5.9 Denotation of the evaluated parameter in the output file of program WTAQ3

Parameter Type of well Output Equation

HD Observation well
(or piezometer)

Dimensionless Calculating function
(Eq. 2.20), (Eq. 1.108)

HWD Pumping well Dimensionless Calculating function
(Eq. 2.21), (Eq. 1.109)

DRAWDOWN Observation well
(or piezometer)

Dimensional Calculating drawdown
(Eq. 2.20), (Eq. 1.108)

DRAWDOWN Pumping well Dimensional Calculating drawdown
(Eq. 2.21), (Eq. 1.109)
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In output file, we obtain HD = 5.250D+00. The obtained value yields the
drawdown

s ¼ Q
4pkrm

HD:

In the output file, we will have DRAWDOWN = 5.222D−01. This corresponds
to the dimensionless value HD:

DRAWDOWN ¼ Q
4pkrm

HD:

Table A5.10 Calculating dimensionless parameters for WTAQ3 program

TDYLAST SIGMA XKD RWD WD XLD XDD RD XZD1 XZD2

1.6e5a/1.6e3b 2e−3 0.5 0.005 66666.7 0.8 0.5 10 0.45 0.25
aFor dimensional output
bFor dimensionless output

Example of input file for dimensionless output
(for an observation well):

Input-file format:

1.6e3 0 1 2
1.0e9 2.0e-3 0.5 1
0.005 66666.7 0.0 0.8 0.5 0 0
1.0e-10 1.0e-8 3000. 4
1.0 1.0 0.0 0.0 0.0 0.0 0
10.0 0.0 0.0 0.45 0.25 0 0

TDYLAST NLC NOX KT
GAMMA SIGMA XKD IWT
RWD WD SW XLD XDD IPWS IPUMP
RERRNR RERRSUM XMAX NS
RATIO_SS RATIO_B AS ARW AQ AT IA
RD WDPRIME XZD XZD1 XZD2 IOWS IDPR

An example of input file of dimensional
output (for an observation well):

Input-file format:

1.6e5 0 1 2
1.0e9 2.0e-3 0.5 1
0.005 66666.7 0.0 0.8 0.5 0 0
1.0e-10 1.0e-8 3000. 4
1.0 1.0 1.0e-4 0.1 100. 80. 1
10.0 0.0 0.0 0.45 0.25 0 0

TDYLAST NLC NOX KT
GAMMA SIGMA XKD IWT
RWD WD SW XLD XDD IPWS IPUMP
RERRNR RERRSUM XMAX NS
RATIO_SS RATIO_B AS ARW AQ AT IA
RD WDPRIME XZD XZD1 XZD2 IOWS IDPR
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To take into account a piezometer, set IDPR = 1 in the sixth line of the input file
and calculate WDPRIME (see Line 6 in Table A5.7).

In the output file, we obtain DRAWDOWN = 2.926D+00.
To take into account wellbore skin, specify the value SW in the third line of the

input file (Table A5.7). If we take kskin ¼ 0:5 m/d, mskin ¼ 0:01 m, we will obtain
SW = 0.8 and the drawdown in the pumping well for this problem: DRAWDOWN
= 3.456D+00.

Appendix 5.4 Program WTAQ Version 2

The program was developed in 2011 by P.M. Barlow and A.F. Moench. The
description of input parameters (Tables A5.12, A5.13, A5.14 and A5.15) is based
on a guide written by the program’s authors (Barlow and Moench 2011).

The potentialities of the program are the same as those of WTAQ3 (see
Appendix 5.3 and Fig. 5.3). Additionally, the program takes into account the effect
of drainage with unsaturated-zone characterization on water level changes in an
unconfined aquifer. The program also provides an option allowing the effect of
wellbore storage to be ignored.

This appendix includes brief information about the input file for the program for
the drawdown calculation (in meters)—dimensional format. For the description of
the input file for obtaining the dimensionless drawdown, see the guide (Barlow and
Moench 2011).

Input. Input-file formats for calculating the drawdown in the pumping and
observation wells are different. The first thirteen lines are the same, followed by two
lines for calculating the drawdown in a pumping well or five lines for the drawdown
in an observation well.

Example of input file for dimensional output
(for the pumping well):

Input-file format:

1.6e5 0 1 1
1.0e9 2.0e-3 0.5 1
0.005 66666.7 0.0 0.8 0.5 0 1
1.0e-10 1.0e-8 3000. 4
1.0 1.0 1.0e-4 0.1 100. 80. 1
10.0 0.0 0.0 0.45 0.25 0 0

TDYLAST NLC NOX KT
GAMMA SIGMA XKD IWT
RWD WD SW XLD XDD IPWS IPUMP
RERRNR RERRSUM XMAX NS
RATIO_SS RATIO_B AS ARW AQ AT IA
RD WDPRIME XZD XZD1 XZD2 IOWS IDPR
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Input-file format for calculating a single value:

Next, two lines are included for calculating the drawdown in a pumping well:

or five lines, for the drawdown in an observation well or piezometer:

The number and the values of parameters in the sixth line of the input file depend
on the type of drainage at the water table—IDRA (Table A5.11).

Table A5.12 explains the first thirteen lines of the input file for program WTAQ
Version 2. Next, Table A5.13 gives explanations for parameters required for cal-
culating the drawdown in the pumping well; and Table A5.14, the same for an
observation well or a piezometer.

Parameters in Table A5.15 are given for the solution by the Stehfest algorithm
(ISOLN = 1) (see Lines 9 and 10 in Table A5.12): the calculation of the drawdown
in a confined aquifer and in an unconfined aquifer at instantaneous drainage or
gradual drainage at water table.

Constants for describing functional relationships between the saturation, per-
meability, and capillary pressure in unsaturated zone enter into the following
functions (Gardner 1958; Mathias and Butler 2006):

Table A5.11 Specifying the sixth line’s parameters, depending on IDRAandNALPHA (see Line 5)

IDRA NALPHA Line 6 Comment

0 0 1e9 Instantaneous drainage at the water table

1 1 ALPHA Gradual drainage at the water table. Empirical
drainage constants, in units of inverse time;
this can be determined by (Eq. 2.15 or Eq. 2.16)

2 0 ACC AKK AMM AXMM Drainage with unsaturated-zone characterization.
Parameter values see in Tables A5.12 and A5.16
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Table A5.12 Input parameters for program WTAQ Version 2 for dimensional format

Parameter Denotation Description

Line 1

TITLE Title of simulation; up to 70 characters in length

Line 2

FORMAT Analysis format. Enter DIMENSIONAL

Line 3

AQTYPE Type of aquifer being simulated. Two options are provided:
AQTYPE = CONFINED or AQTYPE = WATER TABLE

Line 4

BB m Thickness or initial saturated thickness of the aquifer at the
beginning of simulation, in units of length

HKR kr Horizontal hydraulic conductivity of aquifer, in units of length
per time

HKZ kz Vertical hydraulic conductivity of aquifer, in units of length per
time

SS Ss ¼ S=m Specific storage of aquifer, in units of inverse length

SY Sy Specific yield of aquifer, dimensionless. Enter 0.0 if AQTYPE =
CONFINED

Line 5

IDRA Type of drainage at water table. Enter 0 if AQTYPE =
CONFINED. Three options are provided: 0 (instantaneous
drainage), 1 (gradual drainage), 2 (drainage with
unsaturated-zone characterization)

NALPHA Enter 0 if IDRA = 0 or 2; enter 1 if IDRA = 1 (see Table A5.11)

Line 6 depends on the value of IDRA (see Table A5.11); parameters for IDRA = 2 are given
here

ACC ac Soil-moisture retention exponent, in units of inverse length

AKK ak Relative hydraulic-conductivity exponent, in units of inverse
length. The value specified must be greater than or equal to that
specified for ACC

AMM Initial unsaturated-zone thickness above the capillary fringe, in
units of length

AXMM The unsaturated-zone thickness above the capillary fringe above
which an assumption of an infinitely thick unsaturated-zone
thickness is assumed, in units of length

Line 7

ITS Time specification. Here we specify ITS = 1

IMEAS Specification of measured drawdown data. Here we specify
IMEAS = 0

Line 8

TLAST Largest value of time. Here we specify TLAST = 0.0

NLC The number of logarithmic cycles on the time scale for which
drawdown will be calculated. For calculating a single value,
NLC = 0

(continued)

324 Appendix 5: Application of Computer Programs for Analysis Aquifer Tests



Table A5.12 (continued)

Parameter Denotation Description

NOX The number of equally spaced times per logarithmic cycle for
which drawdown will be calculated. For calculating a single
value, NOX = 0

Line 9

ISOLN Numerical-inversion solution type: 1 (solution by the Stehfest
algorithm—must use this option for confined aquifers), 2
(solution by the de Hoog algorithm—must use this option for
IDRA = 2)

Line 10—data are given for calculations in an unconfined aquifer taking into account the
drainage with unsaturated-zone characterization: IDRA = 2 (see Line 5), ISOLN = 2 (see Line 9).
In other cases, the description of parameters in Line 10 see in Table A5.15

RERRNR Relative error for Newton-Raphson iteration and finite
summations of drawdown for water-table aquifers. A value of
1.0e−10 is suggested

ERROR Relative error sought for the accuracy of the numerical inversion.
A value of 1.0e−4 is suggested

NTMS Factor used to determine the number of terms in the finite
summation for drawdown for unconfined aquifers. Suggested
values are 20 or 30

NNN Number of terms used in the summation of the Fourier series of
the approximation to the inverse Laplace transform. A value of 6
is suggested

METHOD Indicates which method will be used to accelerate the
convergence of the Fourier series. Options are 1, 2, or 3.
Only METHOD = 3 has been tested and was found to be
satisfactory

Line 11

IPWS Type of pumped well: 0 (partially penetrating pumped well), 1
(fully penetrating pumped well)

IPWD Type of diameter of pumped well: 0 (infinitesimal diameter –
line-source theory), 1 (finite diameter)

IPUMP Option to suppress calculations of drawdown at pumped well: 0
(drawdown is not calculated at pumped well), 1 (drawdown is
calculated at pumped well)

Line 12

QQ Q Pumping rate of well, in units of cubic length per time

RW rw Radius of pumped well screen, in units of length

RC rc Inside radius of pumped well in the interval where water levels
are changing during pumping, in units of length. Enter 0.0 if
IPWD = 0

ZPD zw2 Depth below the top of aquifer or initial water table to the top of
the screened interval of the pumped well, in units of length

ZPL zw1 Depth below the top of aquifer or initial water table to the bottom
of the screened interval of the pumped well, in units of length

SW kmskin

rwkskin

Wellbore skin parameter, dimensionless

(continued)
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(1) effective-saturation function—relationship between capillary forces and
porous materials saturation:

Se hð Þ ¼ exp achð Þ; ðA5:1Þ

(2) relative permeability function—relationship between capillary forces and
relative permeability:

krel hð Þ ¼ exp akhð Þ: ðA5:2Þ

From (Eqs. A5.1 and A5.2), we obtain the relative permeability as a function of
saturation:

krel Seð Þ ¼ Sak=ace ; ðA5:3Þ

Se ¼ S� Sr
1� Sr

; ðA5:4Þ

Table A5.12 (continued)

Parameter Denotation Description

Line 13

NTSPW Number of user-specified times for which drawdown at the
pumped well will be calculated. If NTSPW = 0, no drawdowns
are calculated for the pumped well. For calculating a single value
in the pumping well, NTSPW = 1, for that in an observation well,
NTSPW = 0

IRUN Option to suppress drawdown calculations for the pumped well.
Options are: 0 (drawdowns not calculated), 1 (drawdowns
calculated). For calculating a single value in a pumping well,
IRUN = 1, for the same in an observation well, IRUN = 0

Table A5.13 Continuation of Table A5.12: input parameters required to calculate the drawdown
in the pumping well

Parameter Description

Line 14

TIMEPW(I) To determine a single drawdown in the pumping well, one moment in time for
which the calculation is required is to be specified

XMEASPW
(I)

Leave blank

Line 15 (or Line 14 for calculation of drawdown in an observation well or piezometer)

NOBWC Number of observation wells or piezometers for which drawdown curves will
be calculated. For calculating a single drawdown in the pumping well,
NOBWC = 0; for a single drawdown in the observation well, NOBWC = 1
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Table A5.14 Continuation of Table A5.12: input parameters required to calculate the drawdown
in an observation well or piezometer

Parameter Denotation Description

Line 15

OBNAME Name of observation well or piezometer; up to ten characters in
length

IOWS Type of observation well or piezometer: 0 (partially penetrating
observation well), 1 (fully penetrating observation well), 2
(observation piezometer)

IDPR Options for delayed response of observation well: 0 (no delayed
response), 1 (delayed response)

Line 16

R r Radial distance from the axis of pumped well to observation
well or piezometer, in units of length

Z1 zp2 Depth below top of aquifer or initial water table to the top of
screened interval of observation well, in units of length. Use for
IOWS = 0 or 1. Enter 0.0 if IOWS = 2

Z2 zp1 Depth below top of aquifer or initial water table to the bottom of
screened interval of observation well, in units of length. Use for
IOWS = 0 or 1. Enter 0.0 if IOWS = 2

ZP LTp Depth below top of aquifer or initial water table to center of
piezometer, in units of length. Use for IOWS = 2. Enter 0.0 if
IOWS = 0 or 1

RP rp Inside radius of the observation well (or piezometer) standpipe
in the interval over which water levels are changing during
pumping, in units of length. Enter 0.0 if IDPR = 0 (no delayed
response)

XLL lp Length of screened interval of observation well, in units of
length. Enter 0.0 if IDPR = 0 (no delayed response)

Line 17

NTSOB Number of user-specified times for which drawdown at the
observation well or piezometer will be calculated. If NTSOB =
0, no drawdowns are calculated for the observation well or
piezometer. For calculating a single value, NTSOB = 1

IRUN Option to suppress drawdown calculations for the observation
well or piezometer. Allows user to specify time-drawdown data
(Line 17), but those data are ignored during the simulation.
Options are: 0 (drawdowns not calculated), 1 (drawdowns
calculated). For calculating a single value, IRUN = 1

Line 18

TIMEOB(I) To determine a single drawdown in an observation well or
piezometer, one moment in time for which the calculation is
required is to be specified

XMEASOB
(I)

Leave blank
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where h is pressure head in the unsaturated zone (h\0), m; ac; ak are empirical
parameters characterizing porous materials capillary properties (the soil-moisture
retention exponent and the relative hydraulic-conductivity exponent), 1/m; Se is the
effective saturation, dimensionless; krel is relative permeability, dimensionless;
S; Sr are the saturation and residual saturation, dimensionless.

Since S ¼ h=n, then (Eq. A5.4):

Se ¼ h� hr
n� hr

; ðA5:5Þ

where dimensionless parameters include h as volumetric soil-moisture content; hr
as residual soil-moisture content; and n as sediment porosity.

The relationship A5.3 was first proposed by Averyanov (1949) in the form:

krel Seð Þ ¼ Sme ; ðA5:6Þ

where the exponent m, according to different estimates can vary between three and
four. Comparing Eqs. A5.3 and A5.6 we obtain ak ¼ mac.

Table A5.16 gives parameters for drainage with unsaturated-zone characteriza-
tion (see Line 6 in Table A5.12) and their effect on the drawdown calculation.

Output. The output file of program WTAQ Version 2 depends on input-file
format: type-curve format or dimensional format. Examples for calculating the
drawdown in meters (dimensional format) are given below in the form of pro-
cessing functional relationships (Eqs. 2.20 and 2.21).

Example. Evaluating the average drawdown in partially penetrating observation
and pumping wells, located in an unconfined aquifer with wellbore storage taken
into account. For the input data, see Table A5.2. Additionally, the solution of this

Table A5.15 Parameters for the solution by the Stehfest algorithm (ISOLN = 1)

Parameter Description

RERRNR Error for Newton-Raphson iteration and finite summations of drawdown for
water-table aquifers. A value of 1.0e−10 is suggested. Enter 0.0 for AQTYPE =
CONFINED

RERRSUM Relative error for finite summations of the drawdown for confined aquifers.
Suggested value is 1.0e−7 to 1.0e−8. Enter 0.0 if AQTYPE = WATER TABLE

NMAX Maximum number of terms permitted in the finite summations of the drawdown
for confined aquifers. Suggested value is 200. Enter 0 if AQTYPE = WATER
TABLE

NTMS Factor used to determine the number of terms in the finite summations for the
drawdown for water-table aquifers. Suggested values are 20 or 30. Enter 0 if
AQTYPE = CONFINED

NS Number of terms used in the Stehfest algorithm. This must be an even integer,
the value of which depends upon computer precision. If the computer holds 16
significant figures in double precision, let NS = 6–12. A value of 8 is
recommended
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problem requires the radiuses of the pumping well and its casing: rw ¼ 0:1 m,
rc ¼ 0:2 m. Parameters for drainage with unsaturated-zone characterization are also
required (see Line 6 in Table A5.12). The discharge rate of the pumping well is Q =
100 m3/d.

In the output file, we obtain CALCULATED DRAWDOWN = 0.5398D+00.
To take into account the delayed piezometer response, Line 15 is to contain

IDPR = 1; and Line 16 is to contain the radius (RP) and length (XLL) of the
observation well. In solving the problem, the program computes the shape factor for
a partially penetrating observation well in an unconfined aquifer (see Table A5.1
and Line 277 of the source program code).

In the preparation of input file for the dimensional format, the program uses the
shape factor for a partially penetrating observation well in an unconfined aquifer
(see Table A5.1 and Line 277 of the source program code).

Table A5.16 Parameters for drainage with unsaturated-zone characterization

AMM >= AXMM Unsaturated zone is of infinite thickness

AMM < AXMM Unsaturated zone is of finite thickness

ACC An increase in this parameter reduces the effect of the unsaturated zone

AKK A decrease in this parameter reduces the effect of the unsaturated zone

AMM An increase in this parameter reduces the effect of the unsaturated zone

ACC <= AKK A necessary condition for problem solution

For a detailed description of parameters, see the guide for program WTAQ version 2 (Barlow and
Moench 2011)

Input file for calculating the drawdown
in an observation well:

Input-file format:

Example for observation well
DIMENSIONAL
WATER TABLE
20.0 4.0 2.0 5.0e-6 0.05
2 0
5.0 30.0 10.0 1.0
1 0
0.0 0 0
2
1.0e-10 1.e-4 30 6 3
0 1 0
100.0 0.1 0.2 10.0 16.0 0.0
0 0
1
obs1 0 0
1.0 5.0 9.0 0.0 0 0
1 1
1.0

TITLE
FORMAT
AQTYPE
BB HKR HKZ SS SY
IDRA NALPHA
ACC AKK AMM AXMM
ITS IMEAS
TLAST NLC NOX
ISOLN
RERRNR ERROR NTMS NNN METHOD
IPWS IPWD IPUMP
QQ RW RC ZPD ZPL SW
NTSPW IRUN
NOBWC
OBNAME IOWS IDPR
R Z1 Z2 ZP RP XLL
NTSOB IRUN
TIMEOB(I)
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In the output file, we will have CALCULATED DRAWDOWN = 0.2943D+01.
To take into account the wellbore skin of the pumping well, specify SW in the

twelfth line of input file (see Table A5.12). Assuming kskin ¼ 0:5 m/d, mskin ¼ 0:01
m, we will obtain SW=8.0 and the drawdown in the pumping well for this problem:
CALCULATED DRAWDOWN = 0.3473D+01.

Appendix 5.5 Program DP_LAQ

The program was developed in 1990 by A.F. Moench. The description of input
parameters (Table A5.17) was compiled based on software code DP_LAQ.FOR,
program author’s publications (Moench 1984, 1985), and a paper devoted to
Warren–Root model (Warren and Root 1963).

The program is intended for calculating the drawdown in observation wells in
stratified systems (see Sect. 3.6) or fractured–porous media (see Sect. 6.1). The
program solves the following problems:

(1) evaluating the drawdown in the main aquifer and in aquitards in a three-layer
system (Fig. A5.4b–d);

(2) evaluating the drawdown in the main aquifer and in aquitards in a two-layer
system (Fig. A5.4e, f);

(3) evaluating the drawdown in a fracture and a block of fractured–porous med-
ium (see Fig. 6.1).

The program considers wellbore storage and skin. Fracture skin is also taken into
account in the case of fractured–porous media.

An example of input file for calculating the
drawdown
in the pumping well

Input-file format:

Example for pumping well
DIMENSIONAL
WATER TABLE
20.0 4.0 2.0 5.0e-6 0.05
2 0
5.0 30.0 10.0 1.0
1 0
0.0 0 0
2
1.0e-10 1.e-4 30 6 3
0 1 1
100.0 0.1 0.2 10.0 16.0 0.0
1 1
1.0
0

TITLE
FORMAT
AQTYPE
BB HKR HKZ SS SY
IDRA NALPHA
ACC AKK AMM AXMM
ITS IMEAS
TLAST NLC NOX
ISOLN
RERRNR ERROR NTMS NNN METHOD
IPWS IPWD IPUMP
QQ RW RC ZPD ZPL SW
NTSPW IRUN
TIMEPW(I)
NOBWC
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Table A5.17 Input parameters for DP_LAQ program

Parameter Formula Description

Line 1

N The no. of terms in the Stehfest algorithm. It must be an even
number, usually in the range of 8–12. N = 8 is usual

Line 2

IMAT 1 (means groundwater format), 2 (means petroleum format)

LD 1 (means large diameter well), 2 (means line source well)

LCASE Calculation in stratified systems: 1 (Fig. A5.4b, e), 2 (Fig. A5.4c,
f), 3 (Fig. A5.4d)
Calculation in fractured–porous media: 4 (means fracture—slabs,
Fig. 6.1a), 5 (means fracture—spheres, Fig. 6.1b), 6 (means frac-
ture—Warren and Root, Fig. 6.1c)

IQ 0 (means no leakage), 1 (means leakage from both semi-confining
layers, Fig. A5.4b–d), 2 (means leakage from overlying bed only,
Fig. A5.4e, f, or double-porosity models, Fig. 6.1), 3 (means
leakage from underlying bed only—the layout of layers see in Fig.
3.17c, e)

Line 3—parameters for stratified systems

SIGP S0=S
GAMMP rw=B1 where B1 see formula (Eq. 3.117)

ZDP z0p=m

Line 4—parameters for stratified systems

SIGPP S00=S
GAMMPP rw=B2 where for B2 see formula (Eq. 3.118)

ZDPP z00p=m

Line 5

RD r=rw Dimensionless radial distance

WD r2c
2r2wSsm

Dimensionless wellbore storage coefficient

WSKIN kmskin

rwkskin

Dimensionless coefficient of wellbore skin

Line 6—parameters for fractured–porous media

SIG S0s=Ss where S0s; Ss are specific storage values for block and fractured
systems, 1/m

GAMM
2
rw
mb

ffiffiffiffi
k0

k

r
where k0; kare hydraulic conductivities for block and fracture
systems, m/d; mb is the average thickness of block, m

FSKIN
2
k0mf

skin

k f
skinmb

Dimensionless coefficient of fracture skin, where k f
skin; m

f
skin are the

hydraulic conductivity (m/d) and the thickness of fracture skin
(m) (see Fig. 6.1d). This is used only for fractured systems with
slab-shaped blocks and sphere-shaped blocks (see Fig. 6.1a, b)

(continued)
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Input. Input-file format for calculating a single value (formatted data input, i.e.,
each parameter occupies a specified position in the line):

Table A5.17 (continued)

Parameter Formula Description

Line 7—parameters for fractured–porous media

XLAM
ar2w

k0

k
The parameter governing inter-porosity flow (Warren and
Root 1963), dimensionless.
a ¼ 4nðnþ 2Þ=l2—relates to geometry of blocks under assumption
of pseudo-steady-state flow, 1/m2; n ¼ 1; 2; 3 is the number of

normal sets of fractures; l ¼ 3abc
abþ bcþ ca

for n ¼ 3, l ¼ 2ab
aþ b

for

n ¼ 2, l ¼ a for n ¼ 1—characteristic dimension of heterogeneous
region, m2; a; b; c are block dimensions along three directions
(length, width, height), m

Line 8—parameters for fractured–porous media

ZD 2zp=mb Here, zp is the distance measured from the center of a slab-shaped
block to the fracture (see Fig. 6.1a), m; mb is the average block
thickness, m

RHO 2zp=mb Here, zp is the distance measured from the center of a
sphere-shaped block to the fracture (see Fig. 6.1b), m; mb is
average block diameter, m

Line 9

TDLAST kt
Ssr2

Last value of dimensionless time. For calculating a single value in
an unconfined aquifer—TDLAST = TD. Here, Ss is the specific
storage of the main aquifer (for stratified systems) or the fracture
system (for fractured–porous media)

NLC Number of log cycles of time; for calculating a single value, NLC
= 0

NOX Number of points to be computed per log cycle of time; for
calculating a single value, NOX = 1

Line 10

XMULT Factor for calculating distances to the pumping well; for
calculating a single value, XMULT = 1.0

KT Number of points to be computed per log cycle of time; for
calculating a single value, KT = 1
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A short field contains five characters; a long field, ten characters. Parameters N,
IMAT, LD, LCASE, IQ, NLC, NOX, and KT are integers, other parameters are real
variables to be written with a decimal point.

Fig. A5.4 Schematic diagrams for problem solution with DP_LAQ program. a The layout and
names of geological layers; b–d three-layer systems; e, f two-layer systems
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The need to fill fields in some lines of the input file depends on the chosen
conceptual model: Lines 1, 2, 5, 9, 10 are to be filled for all models; Lines 3, 4, for
three-layer systems; Line 3, for two-layer systems; Lines 6, 7, 8, for fractured–
porous media. The fields not to be filled may contain arbitrary values or remain
empty. The choice of the conceptual model is specified by parameters LCASE and
IQ in the second line of the input file (Table A5.18).

Output. After execution of the program, the output file will contain the calcu-
lated value of a function that enters one of the relationships for stratified systems
(Eqs. 3.122, 3.123, 3.128, or 3.129) or for fractured–porous media (Eqs. 6.1–6.3).
The denotation of the calculated parameter in the output file depends on the con-
ceptual model and the position of the observation point in the cross-section (see
Table A5.18).

Once started, program DP_LAQ reads the input file DP_LAQ.INP and writes
data into DP_LAQ.OUT.

Example 1. Drawdown calculations in observation wells located in the main
aquifer of a three-flow system and in adjacent aquifers (Fig. A5.4b). Table A5.19
gives input data for solving the problem. The pumping-well radius is incorporated
when evaluating dimensionless parameters, but its value will have no effect on the
result, if the wellbore storage is excluded from calculations (LD = 2).

Table A5.20 gives dimensionless parameters based on formulas in Table A5.17
and input data in Table A5.19.

Table A5.18 The choice of the conceptual model and the denotation of a calculated parameter in
the output file

Conceptual model Fig. Input
(Line 2)

Output

LCASE IQ HD HDP HDPP

Three-flow systems and two
adjacent aquifers

A5.4b 1 1 Main
aquifer

Aquitard #1 Aquitard #2

Three-flow systems with no
adjacent aquifers

A5.4c 2 1 Main
aquifer

Aquitard #1 Aquitard #2

Three-flow systems and one
adjacent aquifer

A5.4d 3 1 Main
aquifer

Aquitard #1 Aquitard #2

Two-flow systems and one
adjacent aquifer

A5.4e 1 2a Main
aquifer

Aquitard

Two-flow systems with no
adjacent aquifers

A5.4f 2 2a Main
aquifer

Aquitard

Fracture—slab-shaped blocks 6.1a 4 2 Fracture Block

Fracture—sphere-shaped
blocks

6.1b 5 2 Fracture Block

Fracture—Warren–Root
model

6.1c 6 2 Aquifer

aIn the case of leakage through the bottom (Fig. 3.17c, e) of the main aquifer, IQ = 3
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Example of input file for drawdown calculation in a three-flow system with two
adjacent aquitards:

The output file will contain three dimensionless-drawdown values: for the main
aquifer (HD = 8.317192D+00), for the top aquitard (HDP = 2.471643D+00), and
for the bottom aquitard (HDPP = 8.136826D−03), whence we evaluate drawdowns:

s ¼ Q
4pkm

HD, s0 ¼ Q
4pkm

HDP; and s00 ¼ Q
4pkm

HDPP:

To take into account the wellbore storage and skin, specify the values WD and
WSKIN in the fifth line of the input file and set LD = 1.

Table A5.19 Input data for calculations in three-flow system

Parameter Value Description

m; m0; m00 20, 5, 10 The thicknesses of the main aquifer and the upper and bottom
aquitards, m

r 1 Distances from the observation well to the pumping well, m

t 0.01 The time elapsed from the start of pumping, d

rw 0.1 Wellbore radius, m

z0p (z00p) 3 (7) The vertical distance from the top (bottom) of the main aquifer to
the observation point in the top (bottom) aquitard, m

k; k0; k00 1, 0.01,
0.005

Hydraulic conductivities of the main aquifer and the top and
bottom aquitards, m/d

S; S0; S00 1e−5, 1e−4,
2e−4

Storage coefficients of the main aquifer and the top and bottom
aquitards, dimensionless

B1; B2 100, 200 Leakage factors, m; B1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmm0=k0

p
, B2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmm00=k00

p

Table A5.20 Calculation of dimensionless parameters of program DP_LAQ for three-flow
system

TDLAST SIGP GAMMP ZDP SIGPP GAMMPP ZDPP RD

2.0e4 10 1.0e−3 0.6 20 5.0e−4 0.7 10

Appendix 5: Application of Computer Programs for Analysis Aquifer Tests 335



Example 2. Calculating the drawdown in a fractured–porous medium—Warren–
Root model (Fig. 6.1c). Table A5.21 gives the input data for the problem solution.

Table A5.22 gives dimensionless parameters calculated by formulas in
Table A5.17 and input data in Table A5.21.

An example of input file for calculations in fractured–porous medium (Warren–
Root model):

The output file will contain the value of dimensionless drawdown: HD =

3.128315D+00, whence we find the drawdown s ¼ Q
4p km

HD.

Comment. In the original code of DP_LAQ program, the calculation and output
of HDP and HDPP are commented-out. This refers to the calculations of the
drawdown in aquitards and block. To activate these program segments, remove
comment signs from Lines 237–246, Line 269 and comment-out Line 268.

Table A5.21 Input data for calculations in a fractured–porous medium

Parameter Value Description

r 1 Distance from the observation to pumping well, m

t 0.01 Time elapsed from the start of pumping, d

rw 0.1 Wellbore radius, m

k; k0 1, 0.1 Hydraulic conductivities of fractured and block system, m/d

Ss; S0s 1e−5, 1e−3 Specific storages of the nfractured and block system, 1/m

mb 2 Block dimensions a ¼ b ¼ c, m (see comments to XLAM in
Table A5.17)

Table A5.22 Calculation of dimensionless parameters of DP_LAQ program for fractured–porous
media

TDLAST SIG GAMM XLAMa RD

1.0e3 100 3.16e−2 1.5e−2 10
aThe parameter was calculated for n = 3; l = 2; a = 15 1/m2 (see comments to XLAM in
Table A5.17)

336 Appendix 5: Application of Computer Programs for Analysis Aquifer Tests

http://dx.doi.org/10.1007/978-3-319-43409-4_6


Table A5.23 Input parameters of WHI program

Parameter Denotation Description

Line 1

FORMAT Analysis format, enter ‘TYPE CURVE’ for dimensionless
type-curve analysis; enter ‘DIMENSIONAL’ for dimensional
analysis

Line 2

D m Initial saturated thickness of the aquifer, in units of length

HKX,
HKY, HKZ

kx; ky; kz Principal hydraulic conductivities in the x, y, and z axes, m/d, in
units of length per time; kx ¼ kr

SS, SY Ss; Sy Specific storage (1/m) and specific yield (dimensionless)

Line 3

IDRA Type of drainage at water table: 0 (instantaneous drainage), 1
(delayed drainage)

Line 3a—only if IDRA = 1

ALPHA1 a Empirical drainage index used in Boulton’s model, in units of
inverse time; this can be determined by relationship Eq. 2.15 or
Eq. 2.16

Line 4 for FORMAT = TYPE CURVE

TDLAST
ffiffiffiffiffiffiffiffiffiffiffiffi
kxkykz3

p
Ssm2 t

Largest value of dimensionless time. For calculating a single
value—TDLAST = TD

NLC Number of logarithmic cycles on time scale. Enter 0 to calculate
a single value

NOX Number of equally spaced times per logarithmic cycle for which
the drawdown will be calculated. Enter 1 to calculate a single
value

Line 4 for FORMAT = DIMENSIONAL

ITS Time specification: 0 (log-cycle times), 1 (user-specified times)

IMEAS Measured drawdown data, enter 0 if ITS = 0; options for ITS = 1:
0 (measured data not specified for each time), 1 (measured data
specified for each time)

Line 4a—only for FORMAT = DIMENSIONAL

TLAST Largest value of time, enter 0.0 if ITS = 1

NLC Number of logarithmic cycles on time scale, enter 0 if ITS = 1.
Enter 0 to calculate a single value

NOX Number of equally spaced times per logarithmic cycle for which
the drawdown will be calculated, enter 0 if ITS = 1. Enter 1 to
calculate a single value

Line 5

RERRNR Relative error for Newton–Raphson iteration, a value of 1e−10 is
suggested

NTMS Factor used to determine the number of terms in the finite
summations for water-table aquifers; suggested values are 20 or
30. For partially penetrating wells or a piezometer, increase this
value

(continued)
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Table A5.23 (continued)

Parameter Denotation Description

NS Number of Stehfest terms; must be an even integer; 8 terms are
usually sufficient

Line 6

IPWS Type of pumped well: 0 (horizontal well), 1 (inclined well)

Line 7

Q Q Pumping rate of the horizontal or inclined well, in units of cubic
length per time. In dimensionless format, this is a fictitious value

ZW m� LTw Distance from horizontal well to the bottom boundary, or
distance from the center of the inclined well to the bottom
boundary, in units of length

XLEN lw Horizontal or inclined well-screen length, in units of length

ANGLE h Angle between the inclined well and the x axis, in radians; 0°—
horizontal well, 90°—vertical well. Leave blank if IPWS = 0
(horizontal well)

Line 8

NOBWC Number of observation wells or piezometers for which type
curves will be calculated; must be less than or equal to 25. Enter
1 to calculate a single value

Line 9

IOWS Type of observation well or piezometer: 0 (partially penetrating
observation well), 1 (fully penetrating observation well), 2
(observation piezometer)

Line 10

X0, Y0 x and y are the coordinates of the observation well, in units of
length. The pumping well is located in coordinate origin (x = 0,
y = 0); therefore, the distance from the observation to the

pumping well can be calculated as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X02 þY02

p
Z1

m� LTp þ lp
2

z coordinate of the top of screened interval of observation well
(only for IOWS = 0 or 2)

Z2
m� LTp � lp

2
z coordinate of the bottom of screened interval of observation
well (only for IOWS = 0)

Line 11—only when ITS = 1; only for FORMAT = DIMENSIONAL

NTSOB Number of user-specified times at which the drawdown will be
calculated. Enter 1 to calculate a single value

Line 12—only when ITS = 1; only for FORMAT = DIMENSIONAL

TIMEOB
(ID)

To determine a single drawdown in an observation well or
piezometer, specify a single moment at which the drawdown is to
be calculated

XMEASOB
(ID)

Measured drawdown for time i. Leave blank if IMEAS = 0
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Appendix 5.6 Program WHI

The program was developed in 2001 by H. Zhan and V.A. Zlotnik. The description
of input parameters (Table A5.23) is based on the code WHI.FOR, publications by
the program’s authors (Zhan and Zlotnik 2002a), and an unpublished reference
manual (Zhan and Zlotnik 2002b).

Program application features (see Fig. 7.2) include:

• the aquifer is homogeneous, horizontally and vertically anisotropic, and
unconfined;

• the pumping well is horizontal or inclined;
• gradual drainage at water table can be taken into account;
• the drawdown (or dimensionless drawdown) is calculated for a fully penetrating

or partially penetrating well, or in a piezometer;
• the wellbore radius is assumed to be infinitely small, i.e., the wellbore storage is

neglected.

Input. Input-file format for calculating a single value (the number of lines
depends on the output format and the type of drainage at water table):

Output. After execution of the program, the values that will be written in the
output file will be the calculated function value in the case of dimensionless output
(FORMAT = TYPE CURVE) or the drawdown in the case of dimensional output
(FORMAT = DIMENSIONAL), see Eq. 7.3.

Program WHI reads the input file named INPUT and writes data into OUTPUT.
Example. Drawdown calculation in a partially penetrating observation well. The

calculations are carried out in dimensionless and dimensional form. The input data
for problem solution are given in Table A5.24.
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The missing parameters for the input file of WHI program are calculated based
on Tables A5.23 and A5.24: ZW ¼ m� LTw ¼ 5 m, Z1 ¼ m� LTp � lw=2

� � ¼ 19
m, Z2 ¼ m� LTp þ lw=2

� � ¼ 1 m.

In the output file, we will have: CALCULATED DRAWDOWN = 0.1882D+01.
For dimensionless output, specify
TDLAST ¼ TD=RDSQ ¼ tðX02Ss=kx þY02Ss=kyÞ�1 ¼ 500:0:

Table A5.24 Input data for calculating drawdown in an unconfined aquifer at pumping from a
horizontal well

Parameter Vallue Description

m 20 Initial water-saturated thickness, m

X0, Y0 1, 1 Coordinates of observation well, m

t 0.01 Pumping start time, d

Q 100 Pumping-well discharge rate, m3/d

lw; lp 10, 18 Screen lengths of the pumping and observation wells, m

LTw; LTp 15, 10 Distances from the initial water table to the screen centers of the
pumping and observation wells, m

kx; ky; kz 1, 1, 0.5 Horizontal and vertical hydraulic conductivities, m/d; kx ¼ kr
Ss 0.00001 Specific storage, 1/m

Sy 0.1 Specific yield, dimensionless

Example of input file for dimensional output: Input-file format:

DIMENSIONAL
20.0 1.0 1.0 0.5 1.0e-5 0.1
0
1 0
0.0 0 0
1.0e-10 30 8
0
100.0 5.0 10.0
1
0
1.0 1.0 19.0 1.0
1
0.01

FORMAT
D HKX HKY HKZ SS SY
IDRA
ITS IMEAS
TLAST NLC NOX
RERRNR NTMS NS
IPWS
Q ZW XLEN
NOBWC
IOWS
X0 Y0 Z1 Z2
NTSOB
TIMEOB(ID)
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In the output file, we will obtain DIMENSIONLESS DRAWDOWN (HD) =
0.1878D+01. From the obtained value, we calculate the drawdown so:

s ¼ Q

2pm
ffiffiffiffiffiffiffiffiffiffiffiffi
kxkykz3

p HD,

which corresponds to the value calculated above.

An example of input file for dimensionless output: Input-file format:

TYPE CURVE
20.0 1.0 1.0 0.5 1.0e-5 0.1
0
500.0 0 1
1.0e-10 30 8
0
100.0 5.0 10.0
1
0
1.0 1.0 19.0 1.0

FORMAT
D HKX HKY HKZ SS SY
IDRA
TDLAST NLC NOX
RERRNR NTMS NS
IPWS
Q ZW XLEN
NOBWC
IOWS
X0 Y0 Z1 Z2
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Appendix 6
Application of UCODE_2005

The operation of computer code UCODE_2005 is illustrated by the solution of
inverse problems implemented in ANSDIMAT software with the use of the ATFU
module (Sindalovskiy 2014). The ATFU module is intended to solve basic
groundwater flow equations (see Parts I and II) that enable calculating
groundwater-level variations in an aquifer given the hydraulic characteristics. The
minimal data set required for running UCODE_2005 and evaluating aquifer
parameters based on groundwater-level measurements during an aquifer test is
described. An exhaustive description of UCODE_2005 is given in the manual
(Poeter et al. 2005).

Computer program ANSDIMAT creates input files in UCODE_2005 format and
starts its execution. In its turn, UCODE_2005 (1) starts the ATFU module with
supposed values of hydraulic characteristics, (2) analyzes the calculated water-level
variations and appropriate actually measured values, (3) corrects the parameters by
special algorithms, and (4) restarts ATFU. In this manner, the program
UCODE_2005 iterates the ATFU module until the required convergence is
achieved. For solving the problem, UCODE_2005 is to be provided with the for-
mats of the input and output files of the program to be run (in this case, ATFU).

The ATFU module takes input data (discharge rate, distance, time, drawdown,
etc.) from the input files of ANSDIMAT program and solves the chosen equation
with the specified parameters. The ATFU input file (input.atu) contains the values
of hydraulic parameters arranged in one column. The parameters and their number
depend on the chosen equation. For example, in the case of the Theis solution
(Eq. 1.3), these are aquifer transmissivity and hydraulic diffusivity:

200
1e5

while in the case of the Neuman solution (Eq. 2.1), the data include horizontal and
vertical hydraulic conductivities, storage coefficient, and specific yield:

1
0.5
1e-4
0.1
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ATFU creates an output file (output.atu) containing a column of the calculated
drawdown values for the chosen observation wells and time moments. For example,

0.1348103
0.1809126
0.2345209
0.2944637
0.3597146
0.4298151
Before the first run, the input file (input.atu) is to contain the starting values of

the parameters to be adjusted; this file will be modified by UCODE 2005 in the
process of the inverse-problem solution.

To solve the inverse problem requires: (1) to choose the factual water level
changes in observation wells to be used in solving the problem and (2) to choose
the hydraulic characteristics to be evaluated. For example, in the case of the Theis
solution (Eq. 1.3), there are three possibilities: (a) simultaneous evaluation of the
transmissivity and hydraulic diffusivity, (b) the evaluation of transmissivity given
the hydraulic diffusivity, or (c) the evaluation of hydraulic diffusivity given the
transmissivity.

Before running UCODE_2005, three files are to be created: main input file,
instruction file, and template file. The command line for running the program is:

UCODE_2005.exe input-file fn,
where input-file is the name of the main input file, fn is filename prefix for
UCODE_2005 output files.

1. Main input file
In the problem under consideration, the name of main input file is ucode_atfu.in.

The main input file includes input blocks with the basic structure:

Blocklabel. The variable blocklabel identifies the purpose of the data block
and the data it can contain. To solve the problem requires the following nine
Blocklabel’s: Options, Ucode_Control_Data, Reg_Gn_Controls,
Model_Command_Lines, Parameter_Groups, Parameter_Data,
Observation_Data, Model_Input_Files, and Model_Output_Files.

Blockbody. Contains data or the names of files from which the data are to be
read. The format of the data is determined by Blockformat.

Blockformat. Defines the structure of the data presented: KEYWORDS,
TABLE.

KEYWORDS. Blockbody consists of a series of lines in the form:
Keyword=value. For example, Verbose=0. This appendix give only the key-
words required to solve the problem under consideration. For the full set of key-
words for each input block, see the guide (Poeter et al. 2005).
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TABLE. Blockbody consists of a table of data that may have labels on the
columns and may be read from the main input file. The format of the first line for
data input in TABLE format:

NROW=nr NCOL=nc [COLUMNLABELS] [GROUPNAME=gpname]
Here, NROW and NCOL are required keywords; nr is the number of rows in the

table; nc is the number of columns in the table; COLUMNLABELS are column
names used to identify the data in the columns of the table;
GROUPNAME=gpname can be used to assign a group name to all rows in the
table; gpname is the group name.

The Main input file (ucode_atfu.in) consists of nine successively written input
blocks, whose format is described in examples below.

1.1 Options input block
The Options input block can be used to control the information written to the

main output file. To solve the problem requires one keyword: Verbose.
Verbose. Flag that controls what is written to the UCODE_2005 main output

file: 0 (no extraneous output), 1 (warnings), 2 (warnings, notes), 3 (warnings, notes,
echo selected input), 4 (warnings, notes, echo all input), 5 (warnings, notes, echo all
input, plus some miscellaneous information).

Example:

1.2 UCODE_Control_Data input block
The UCODE_Control_Data input block defines the operations pursued by

UCODE_2005 and defines some labeling for data-exchange files. To solve the
problem requires three keywords: ModelName, Optimize, DataExchange.

ModelName. Identifies the model. Up to twelve characters.
Optimize. yes: estimate parameters; no: do not estimate parameters.
DataExchange. yes: generate the data-exchange files containing data for

graphical and numerical analysis. no: do not produce the files.
Example:

1.3 Reg_GN_Controls input block
The Reg_GN_Controls input block controls the performance of the modified

Gauss-Newton regression method of estimating parameter values for the
UCODE_2005 parameter-estimation mode. To solve the problem requires six
keywords: TolPar, TolSOSC, MaxIter, MaxChange, MaxChangeRealm,
and Stats_On_Nonconverge.
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TolPar. Tolerance based on parameter values: parameter-estimation iterations
stop if the maximum fractional change in parameter values between
parameter-estimation iterations is less than the value of TolPar. Default = 0.01.

TolSOSC. Tolerance based on changes to model fit: parameter-estimation
iterations stop if the fractional decline in the sum-of-squared weighted residuals
over three parameter-estimation iterations is less than TolSOSC. A value of 0.01
requires the reduction to be less than 1 percent over three parameter-estimation
iterations. If TolSOSC = 0.0, it is not used. Default = 0.0.

MaxIter. Maximum number of parameter-estimation iterations allowed before
stopping. Default = 5.

MaxChange. Maximum fractional amount parameter values are allowed to
change between parameter-estimation iterations. The value specified here applies to
all parameters; use the Parameter_Data input block to define a unique
MaxChange for each parameter. Default = 2.0, which means that parameter values
can change as much as 200 percent.

MaxChangeRealm. Native: MaxChange applies in native space. Regression:
MaxChange applies in regression space. In regression space, MaxChange applies
to log-transformed values for log-transformed parameters. Default = Native.

Stats_On_Nonconverge. yes: when parameter estimation does not con-
verge in the maximum number of iterations, calculate final sensitivities and cal-
culate and print final statistics. no: when parameter estimation does not converge,
do not calculate and print final statistics.

Example:

1.4 Model_Command_Lines input block
The Model_Command_Lines input block defines the command needed to

execute a process model. This block contains three keywords: Command,
Purpose, and CommandID.

Command. Operating system command that executes the process model(s).
Purpose. The type of process-model run executed by Command. Default =

forward (the command makes a model run that generates simulated values).
CommandID. A name for the command. The command name is used at the top

of the main output file in a list of the programs run; it does not influence the
execution process.
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Example:

1.5 Parameter_Groups input block
Use the Parameter_Groups input block to assign data that apply to all or

many of the parameters within defined groups. To solve the problem requires five
keywords: GroupName, Adjustable, Transform, PerturbAmt, and
SenMethod.

GroupName. The name of the group (up to twelve characters; not case sensi-
tive). Default = ParamDefault.

Adjustable. yes: change this value as needed depending on the purpose of
the UCODE_2005 run defined in the UCODE_Control_Data input file. no:
leave the value of this parameter unchanged.

Transform. yes: log-transform the parameter for the regression. no: estimate
the native value in the regression. If Transform=yes, any transformed values
printed to files are in log base 10 except that weighted residuals for prior infor-
mation are in natural log. Within the program, calculations are done using natural
logs.

PerturbAmt. Fractional amount of the parameter value to perturb to calculate
sensitivity. Commonly 0.01–0.10.

SenMethod. A flag indicating how sensitivities are obtained. Sensitivities for
different parameters can be obtained using different methods. For each parameter,
sensitivities for all simulated values are calculated by a single method. Options
include: 1 (calculate by forward-difference perturbation) and 2 (calculate by
central-difference perturbation—two-point method).

Example:

1.6 Parameter_Data input block
The Parameter_Data input block provides information about individual

parameters. To solve the problem requires two keywords: ParamName
andStartValue.

ParamName. Parameter name (up to 12 characters; not case sensitive)—a
character string that is used in a template file. Each parameter name needs to be
unique. In this problem, the names assigned to parameters are P1, P2, P3, etc.

StartValue. Starting parameter value.
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Example (evaluating two parameters P1 and P2, the initial values for the search
are 200 and 100000):

1.7 Observation_Data input block
The Observation_Data input block provides information about individual

observations. To solve the problem requires four keywords: ObsName,
ObsValue, Statistic, and StatFlag.

ObsName. Observation name (up to 20 characters, not case sensitive). Each
observation name needs to be unique. The format of the observation name in this
problem is as follows: letter «h» + measurement no. + «.» + observation well no.
For example, h3.2 means the third measurement in the second well.

ObsValue. Observation value.
Statistic. Value used to calculate the observation weight.
StatFlag. Character string that defines the corresponding statistic and how it

is used to calculate the weight. Options are: var (variance—1/Statistic), sd
(standard deviation—1/Statistic2), cv (coefficient of variation—1/
(Statistic�ObsValue)2), wt (weight—Statistic), sqrwt (square root of
the weight—Statistic2).

Example (measurements in two observation wells; six measurements in the first
well and four measurements in the second):

1.8 Model_Input_Files input block
The Model_Input_Files input block lists each process-model input file that

needs to be changed when parameter values change and an associated template file.
This block contains two keywords: ModInFile andTemplateFile.
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ModInFile. Name for a process-model input file. In this problem—input.atu.
TemplateFile. Name of the template file that UCODE_2005 will use to

create the associated process-model input file, ModInFile. In this problem—atfu.
in.tpl.

Example:

1.9 Model_Output_Files input block
The Model_Output_Files input block defines how UCODE_2005 obtains

values from the files produced by the process model. This block contains three
keywords: ModOutFile, InstructionFile, and Category.

ModOutFile. Name of the process-model output file from which
UCODE_2005 is to extract values. In this problem—output.atu.

InstructionFile. Name for the instruction file that UCODE_2005 uses to
extract values from ModOutFile. In this problem, this is ucode_atfu.ins.

Category. The following options are available: Obs (the process-model output
file is used to calculate simulated equivalents to observations) and Pred (the
process-model output file is used to calculate predictions).

Example:

6.2 Instruction file
In this problem, the name of the instruction file is ucode_atfu.ins. Instruction file

is used to read information from the process-model output files (output.atu). The
first two lines of the instruction file contain:

jif @
StandardFile Nskip ReadColumn Nread

Given next are the names for each of the Nread values. Place each name on a
new line.

jif @. Defines the file delimiter needed in instruction file. It is not used to read
standard files.

StandardFile. A keyword that indicates a standard file is being read.
Nskip. The number of lines to skip at the beginning of the file, which can be 0

or any positive integer.
ReadColumn. The column of the file from which values are to be read.
Nread. The number of values, and therefore lines, to be read.
Example (the observation names and their number are to agree with data in

Observation_Data input block):
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jif @
StandardFile 0 1 10
h1.1
h2.1
h3.1
h4.1
h5.1
h6.1
h1.2
h2.2
h3.2
h4.2

An example of output file (output.atu):

3.999016
4.090797
4.180674
4.274287
4.364491
4.455947
1.445078
1.535643
1.624569
1.717396

6.3 Template file
In this problem, the name of template file is atfu.in.tpl. Template file is used to

create process-model input files (intput.atu). The format of the template file:

jtf !
!name!

jtf !. Defines the file delimiter needed in template file.
!name!. Here, given between the exclamation marks is the name of the

parameter to be evaluated (in the denotations of the problem under consideration
P1, P2). The length of the character variable !name! is to be equal to the number
of characters in the value of the output parameters of file input.atu. The lacking
characters are replaced by spaces. That is, if the parameter P1 to be evaluated is to
be written in the output file as 200.376696988261 (consisting of sixteen
characters), then !name! is to be written as!P1□□□□□□□□□□□□!, where
the number of spaces (□) is twelve.

Example (template file for the input file input.atu for the problem):

jtf !
!P1□□□□□□□□□□□□!
!P2□□□□□□□□□□□□!

Here, ☐ means a space.
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Once the inverse problem is solved, the input file (input.atu) will contain the
required parameters. For example:

200.376696988261
106200.762282559

In this example, the program was required to evaluate two parameters. If the first
parameter (transmissivity) is to be found, given the second (the hydraulic diffusivity
is 1e5), the template file becomes

jtf !
!P1□□□□□□□□□□□□!
100000.0

Otherwise, if the second parameter (hydraulic diffusivity) is to be found, given
the first (the transmissivity is 200):

jtf !
200.0
!P2□□□□□□□□□□□□!
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Appendix 7
Special Functions: Analytical
Representations, Graphs,
and Approximations

This appendix gives integral expressions and plots of widely known and special
mathematical functions that enter into basic groundwater-flow equations (see Parts I
and II). The majority of these functions are given with their approximations. The
functions and their approximations were taken from different sources. For some
functions, the author’s approximations are presented. The functions are plotted
based on tabulated values presented in the author’s work (Sindalovskiy 2006).

Appendix 7.1 Well-Function W(u)

Function (Carslow and Jaeger 1959; Theis 1935) (Fig. A7.1 and Table A7.1):

W uð Þ ¼
Z1
u

exp �sð Þ
s

ds; W uð Þ ¼ �Ei �uð Þ ¼ E1 uð Þ;

where �Ei �uð Þ is exponential integral function.
Limits of the function: W 0ð Þ ¼ 1, W 1ð Þ ¼ 0.
Function derivative:

@W uð Þ
@u

¼ � exp �uð Þ
u

:

Expansion in series:

W uð Þ ¼ �c� ln u�
X1
n¼1

�1ð Þnun
nn!

;

where c ¼ 0:5772156649 is Euler’s constant.
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Fig. A7.1 Plots of function W(u): a W(u) − u, b W(u) − lg(u), c W(u) − lg(1/u),
d lg[W(u)] − lg(1/u)

Table A7.1 Approximation of function W(u) (Abramowitzand Stegun 1964)

Range Representation

u\0:05 W uð Þ � ln 0:562
u —for practical calculations (Hantush 1964)

u� 1 W uð Þ ¼ � ln u� cþ 0:99999193 u� 0:24991055 u2 þ 0:05519968 u3

� 0:00976004 u4 þ þ 0:00107857 u5

u� 1 W uð Þ ¼ e�x

x
�

� u4 þ 8:5733287401 u3 þ 18:059016973 u2 þ 8:6347608925 uþ 0:2677737343
u4 þ 9:5733223454 u3 þ 25:6329561486 u2 þ 21:0996530827 uþ 3:9584969228

354 Appendix 7: Special Functions: Analytical Representations, Graphs …



Applications. This function enters into many basic analytical relationships. Its

main application is the Theis solution (Eq. 1.1), where u ¼ r2S
4Tt

¼ r2

4at
.

Appendix 7.2 Well-Function for Leaky Aquifers W(u, b)

Function (Hantush and Jacob 1955) (Fig. A7.2 and Tables A7.2 and A7.3):

W u; bð Þ ¼
Z1
u

1
s
exp �s� b2

4s

� �
ds; W u; bð Þ ¼ 2K0 bð Þ �W

b2

4u
; b

� �

Fig. A7.2 Plots of function W(u, b) at different values of its second argument: a W(u, b) − u,
b W(u, b) − lg(u), c W(u, b) − lg(1/u), d lg[W(u, b)] − lg(1/u)
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Limits of the function: W u; 0ð Þ ¼ W uð Þ, W 0; bð Þ ¼ 2K0 bð Þ.
Function derivative:

@W u; bð Þ
@u

¼ � exp �u� 0:25b2=u
� �

u
:

Expansion in series (Hunt 1977):

W u; bð Þ ¼
X1
n¼0

� b2

4u

� �n
Enþ 1 uð Þ

n!
;

where En uð Þ ¼ R11 exp �usð Þ
sn

ds is exponential integral function. The series con-

verges rapidly at b2=ð4uÞ\1.
Applications. This function enters into many basic analytical relationships. The

main application is Hantush–Jacob solution (Eq. 3.1), where u ¼ r2S
4Tt

¼ r2

4at
, b ¼ r

B
.

Table A7.2 Approximation of function W(u, b) (Hantush and Jacob 1955)

Range Representation

u� 1:0

W u; bð Þ ¼
2K0 bð Þ � I0 bð ÞW b2

4u

� �
þ exp � b2

4u

� �
cþ ln uþW uð Þ � uþ 4u

I0 bð Þ � 1

b2

� �
�

�u2
P1
n¼1

Pn
m¼1

�1ð Þnþm n� mþ 1ð Þ !
nþ 2ð Þ !2um�n

b2

4

� �m

0
BBB@

1
CCCA

For b� 2:0, the infinite series can be replaced by six terms (Walton 1984)

u� 1:0;

b� 0:2
W u; bð Þ ¼ 2K0 bð Þ � I0 bð ÞW b2

4u

� �
þ exp � b2

4u

� �
cþ ln uþW uð Þþ ub2

16
1� u

9

� �� �

u� 0:1;

b� 0:2
W u; bð Þ ¼ 2K0 bð Þ � I0 bð ÞW b2

4u

� �
þ exp � b2

4u

� �
ub2

16
1� u

9

� �
þ u� u2

2:2!
þ u3

3:3!

� �
,

2:2! ¼ 2:42396548; 3:3! ¼ 8:85534336

u� 1:0

W u; bð Þ ¼
I0 bð ÞW uð Þ � e�u cþ ln

b2

4u
þW

b2

4u

� �
� b2

4u
þ I0 bð Þ � 1

u

� �
þ

þ e�u

u2
X1
n¼1

b2

4

� �nXn
m¼1

�1ð Þnþm n� mþ 1ð Þ !
nþ 2ð Þ !2un�m

0
BBB@

1
CCCA

For b� 2:0, the infinite series can be replaced by six terms (Walton 1984)

u� 1:0;

b� 0:2
W u; bð Þ ¼ I0 bð ÞW uð Þ � e�ub2

4u
1� 1

36u
þ b2

16
� b2

16u

� �

c ¼ 0:5772156649—Euler’s constant
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Appendix 7.3 Special Function M(u, b)

Function (Hantush 1961a, b) (Fig. A7.3 and Table 7.4):

M u; bð Þ ¼
Z1
u

exp �sð Þ
s

erf b
ffiffiffi
s

p� �
ds; M u; bð Þ ¼ �M u;�bð Þ:

Limits of the function: M 0; bð Þ ¼ 2 arcsinh b ¼ 2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
þ b

� �
;

M u; 0ð Þ ¼ 0; M u;1ð Þ ¼ WðuÞ.
Applications. This function enters into basic analytical relationships. The main

application is in solutions for a linear source (see Sect. 1.3), where u ¼ r2S
4Tt

¼ r2

4at
; b

depends on well location in the aquifer.

Table A7.3 Approximation of function W(u, b) for practical applications

Range Representation

u[ 2b W u;bð Þ � W uð Þ (Hantush 1964)

b\0:1, u[ 5b2 W u;bð Þ � W uð Þ (Hantush 1964)

b\0:01 W u;bð Þ � W uð Þ (Hantush and Jacob 1955)

u\1:0, u\0:05b2
W u;bð Þ � 2K0 bð Þ � I0 bð ÞW b2

4u

� �
(Hantush 1964)

b[ 2:0
W u;bð Þ ¼

ffiffiffiffiffiffi
p
2b

r
exp �bð Þerfc � b� 2u

2
ffiffiffi
u

p
� �

(Walton 2007)

b\2:0, u\0:05b2 W u;bð Þ ¼ 2K0 bð Þ (Walton 2007)

Fig. A7.3 Plots of function M(u, b) at different values of its second argument: a M(u, b) − lg(u),
b lg[M(u, b)] − lg(u)
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Appendix 7.4 Special Function H(u, b)

Function (Hantush 1960) (Fig. A7.4 and Table A7.5):

H u; bð Þ ¼
Z1
u

exp �sð Þ
s

erfc
b
ffiffiffi
u

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s s� uð Þp

 !
ds:

Limit of the function: H u; 0ð Þ ¼ W uð Þ.
Applications. This function enters into basic analytical relationships. The main

application is in solutions for stratified systems (see Sect. 3.6), where

u ¼ r2S
4Tt

¼ r2

4at
; b depends on the distance, leakage factor and the storage charac-

teristics of the aquifer and aquitards.

Table A7.4 Approximation of function M(u, b) (Hantush 1961b)

Range Representation

u\
0:05

b2
\0:01 M u;bð Þ ¼ 2 arcsinh b� 2ffiffiffi

p
p b

ffiffiffi
u

p� �

u\
0:05

b2
M u;bð Þ ¼ 2 arcsinh b� b erf

ffiffiffi
u

pð Þ

u[
5

b2
M u;bð Þ ¼ W uð Þ

Fig. A7.4 Plots of function H(u,b) at different values of its second argument: a H(u, b) − lg(u),
b lg[H(u, b)] − lg(u)
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Appendix 7.5 Boulton Function

Function (Boulton 1954) (Fig. A7.5 and Table A7.6):

FB u; bð Þ ¼
Z1
0

1
s
J0 bsð Þ 1� exp �us tanh sð Þ½ �ds:

Table A7.5 Approximation of function H(u, b) (Hantush 1960)

Range Representation

u[ 104b2 H u;bð Þ � W uð Þ � 4bffiffiffiffiffiffi
pu

p 0:258þ 0:693 exp � u
2

� �h i
u\10�5b�2 and u\10�4b2 Hðu;bÞ � 1

2
ln
0:044

ub2

Fig. A7.5 Plots of function FB(u, b) at different values of its second argument: a FB(u, b) − lg(u),
b lg[FB(u, b)] − lg(u)

Table A7.6 Approximation of function FB(u, b) for practical applications (Boulton 1954;
Hantush 1964)

Range Representation

u\0:05
FB u;bð Þ � arcsinh

1
b
þ arcsinh

u
b
� arcsinh

1þ u
b

u\0:01 FB u;bð Þ � arcsinh
u
b
� uffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p

u\0:01; u=b[ 10 FB u;bð Þ � ln 2u=bð Þ
u[ 5

FB u;bð Þ � 0:5W
b2

4u

� �
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Applications. Function, where u ¼ kt
Sym

, b ¼ r
m
, enters into Boulton solution

(Eq. 2.17) for unconfined aquifers.

Appendix 7.6 Neuman Function

Function WN u; bð Þ (Neuman 1973, 1975), where u ¼ ts ¼ krmt
Sr2

and u ¼ ty ¼ krmt
Syr2

,

b ¼ v r=mð Þ2, is defined in the text by Eqs. 2.1, 2.8, and 2.9 (see Sect. 2.1). The
plots are given for fully penetrating wells (Figs. A7.6 and A7.7).

Fig. A7.6 Plots of function WN(u, b) at different values of its second argument: a
lg[WN(u, b)] − lg(u), b WN(u, b) − lg(u). The top scale is for u = ts, the bottom scale, for u = ty
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Appendix 7.7 Special Function J*(u, b1, b2)

Function (Hantush 1965) (Fig. A7.8):

J	 u; b1; b2ð Þ ¼ 2
Z1
1

exp �b1 s� 1ð Þ � u s2 þ b22
� �� � s

s2 þ b22
ds:

Limits of the function: J	 u;1; b2ð Þ ¼ J	 1; b1; b2ð Þ ¼ J	 0;1; b2ð Þ ¼ 0,
J	 u; 0; b2ð Þ ¼ W uþ ub22

� �
.

Fig. A7.7 Plots of functionWN(u, b) at different values of its second argument: aWN(ts, b) − lg(ts),
b WN(ty, b) − lg(ty)

Fig. A7.8 Plots of function J*(u, b1, b2) for b2 = 0: a J*(u, b1, 0) − lg(u), b lg[J*(u, b1, 0)] − lg(u).
b2 = 0 implies that the pumping and observation wells are located on a perpendicular to the river
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Applications. This function enters into Hantush solution for pumping near a
stream (Eq. 5.7). The values of arguments are given in equalities (Eqs. 5.9–5.11).

Appendix 7.8 Special Function WNW(u, b)

Function (Neuman and Witherspoon 1968) (Fig. A7.9 and Table A7.7):

WNW u; bð Þ ¼ 2ffiffiffi
p

p
Z1
ffiffi
b

p
W

us2

s2 � b

� �
exp �s2
� �

ds:

Limit of the function: WNW u; 0ð Þ ¼ W uð Þ, WNW 0; bð Þ ¼ 1.

Applications. Function, where u ¼ r2

4at
¼ r2S

4Tt
, b ¼ z2p

4a0t
¼ z2pS

0
s

4k0t
, enters into

Neuman and Witherspoon solutions (Eq. 3.85) for the drawdown in an aquitard (see
Sect. 3.3).

Fig. A7.9 Plots of function
WNW(u, b) at different values
of its second argument:
WNW(u, b) − lg(u)

Table A7.7 Approximation of function WNW(u, b) (fitted by the author):

Range Representation a

u\0:01 and
10�5 � b� 1:0

WNW u; bð Þ ¼ �C bð Þ ln u� A bð Þ,
C bð Þ ¼ a0 exp b0

ffiffiffi
b

p� �
þ a1 exp b1bð Þþ a2 exp b2b

2� �þ a3 exp b3b
3� �þ a4 exp b4b

4� �þ
þ a5 exp b5b

5� �
;

A bð Þ ¼ c0ffiffiffi
b

p þ c1 exp
d1ffiffiffi
b

p
� �

þ c2 exp
d2ffiffiffi
b

p
� �

þ c3 exp d3b
2� �þ c4 exp d4b

3� �þ c5 exp d5b
4� �
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Appendix 7.9 Functions for Large-Diameter Wells

1. Function for Large-Diameter Wells for Nonleaky Aquifers
Function (Papadopulos and Cooper 1967) (Fig. A7.10 and Table A7.8):

F u; bð Þ ¼ 32b2

p2

Z1
0

1� exp �s2= 4uð Þ½ �
sJ0 sð Þ � 2bJ1 sð Þ½ �2 þ sY0 sð Þ � 2bY1 sð Þ½ �2

ds
s3
:

Applications. Equation 1.8; u ¼ r2wS
4Tt

, b ¼ S
r2w
r2c
.

2. Function for the Drawdown in an Observation Well in a Nonleaky Aquifer
during Pumping from a Large-Diameter Pumping Well

Function (Carslow and Jaeger 1959; Papadopulos and Cooper 1967):

F u; b1;b2ð Þ ¼ 8
b2
p

Z1
0

1� exp � s2

4u

� �
 �
�

� J0 b1sð Þ sY0 sð Þ � 2b2Y1 sð Þ½ � � Y0 b1sð Þ sJ0 sð Þ � 2b2J1 sð Þ½ �
sJ0 sð Þ � 2b2J1 sð Þ½ �2 þ sY0 sð Þ � 2b2Y1 sð Þ½ �2

8>><
>>:

9>>=
>>;

ds
s2
:

Fig. A7.10 Plots of a the function and b the logarithm of the function F(u, b) versus the logarithm
of the first argument at different values of its second argument

a0 0.3417002069 b0 –3.340961289 c0 –0.00001486338765

a1 0.1636688436 b1 –9.763932273 c1 0.1263841135 d1 –0.1362851532

a2 0.08009713177 b2 –26.13718737 c2 0.04322525953 d2 –0.0275872065

a3 0.1177404043 b3 –16.94717556 c3 0.2984049043 d3 –4.654639762

a4 0.152695636 b4 –3.126743379 c4 0.02317877338 d4 –314.2350514

a5 0.1441917632 b5 –0.04030147022 c5 0.2631103306 d5 –0.6049903099
a Constant values in equations are given below
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Applications. Equation 1.6; u ¼ r2wS
4Tt

, b1 ¼
r
rw
, b2 ¼ S

r2w
r2c
.

3. Function for Large-Diameter Wells for a Leaky Aquifer
Function (Lai and Chen-Wu Su 1974):

FL u; b2; b3ð Þ ¼ 32
b23
p2

Z1
0

1� exp � s2 þ b22
4u

� �
 �
s

s2 þ b22

(
�

� 1

s2 þ b22
� �

J0 sð Þ � 2b3s J1 sð Þ� �2 þ s2 þ b22
� �

Y0 sð Þ � 2b3sY1 sð Þ� �2
)
ds:

Applications. Equation 3.7; u ¼ r2wS
4Tt

, b2 ¼
rw
B
, b3 ¼ S

r2w
r2c
.

4. Function for the Drawdown in an Observation Well in a Leaky Aquifer
during Pumping from a Large-Diameter Pumping Well

Function (Lai and Chen-Wu Su 1974):

FL u; b1; b2; b3ð Þ ¼ 8
b3
p

Z1
0

1� exp � s2 þ b22
4u

� �
 �
s

s2 þ b22
�

(

� J0 b1sð Þ s2 þ b22
� �

Y0 sð Þ � 2b3sY1 sð Þ� �� Y0 b1sð Þ s2 þb22
� �

J0 sð Þ � 2b3s J1 sð Þ� �
s2 þ b22
� �

J0 sð Þ � 2b3sJ1 sð Þ� �2 þ s2 þ b22
� �

Y0 sð Þ � 2b3sY1 sð Þ� �2
)
ds:

Applications. Equation 3.5; u ¼ r2wS
4Tt

, b1 ¼
r
rw
, b2 ¼

rw
B
, b3 ¼ S

r2w
r2c
.

5. Well-Function S( u , b), Taking into Account Pumping-Well Screen Radius
Function (Carslow and Jaeger 1959) (Fig. A7.11 and Table A7.9):

S u; bð Þ ¼ 4
p

Z1
0

J1 sð ÞY0 bsð Þ � Y1 sð ÞJ0 bsð Þ
J21 sð ÞþY2

1 sð Þ � 1� exp �us2ð Þ
s2

ds:

Limits of the function: S u; 1ð Þ ¼ F 1=4u;1ð Þ—function S(u, 1) is equal to the
function for a large-diameter well at the second argument tending to infinity;
S u; bð Þ ¼ F 1=4u; b;1ð Þ—function S(u, b) is equal to the function for a
large-diameter well for calculating the drawdown in an observation well at the third
argument tending to infinity.

Table A7.8 Approximation of function F(u, b) (Papadopulos and Cooper 1967)

Range Representation

u=b\0:001 F u;bð Þ ¼ W uð Þ
For large values of argument u F u;bð Þ ¼ b=u
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Functions W uð Þ, S u; bð Þ, F u; bð Þ, and F u; b1; b2ð Þ describe water-level changes
in a confined aquifer (see Sect. 1.1.1). Their major differences are as follows: W uð Þ
does not take into account the wellbore storage; S u; bð Þ—only the radius of
pumping-well screen is taken into account (casing radius tends to zero); F u; bð Þ and
F u; b1; b2ð Þ—wellbore storage is taken into account.

Applications. This function is not used in this book. u ¼ Tt
Sr2w

¼ at
r2w
, b ¼ r

rw
.

Fig. A7.11 Plots of function S(u, b) at b = 1: a S(u, b) − lg(u); b lg[S(u, b)] − lg(u). c Plot of
function S(u, b) − lg(u) at different values of its second argument

Table A7.9 Approximation of function S(u, b)

Range Representation

u[ 20
S u;bð Þ � W

b2

4u

� �
(Hantush 1964)

u[ 150 and b ¼ 1 S u; 1ð Þ � ln uð Þþ 0:81 (fitted by the author)

u\0:01 and b ¼ 1 S u; 1ð Þ � exp 0:497 ln uð Þþ 0:774½ � (fitted by the author)
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Appendix 7.10 Functions for Slug Tests

1. Function Fs(u, b) for Water-Level Changes in the Pumping Well during a
Slug Test—Slug Test Function

Function (Carslow and Jaeger 1959; Cooper et al. 1967) (Fig. A7.12):

Fs u; bð Þ ¼ 8b
p2

Z1
0

exp �us2=bð Þ
sJ0 sð Þ � 2b J1 sð Þ½ �2 þ sY0 sð Þ � 2bY1 sð Þ½ �2

ds
s
:

Applications. Function, where u ¼ Tt
r2c
, b ¼ S

r2w
r2c
, enters into the Cooper solution

(Eq. 9.1) for slug tests.

2. Function for Water-Level Changes in an Observation Well during a Slug
Test

Function (Carslow and Jaeger 1959; Cooper et al. 1967):

Fsp u; b1; b2ð Þ ¼ 2
p

Z1
0

exp �us2=b1
� ��

� J0 sb2ð Þ sY0 sð Þ � 2b1Y1 sð Þ½ � � Y0 sb2ð Þ sJ0 sð Þ � 2b1J1 sð Þ½ �
sJ0 sð Þ � 2b1J1 sð Þ½ �2 þ sY0 sð Þ � 2b1Y1 sð Þ½ �2 ds:

Applications. Function, where u ¼ Tt
r2c
, b1 ¼ S r2w

r2c
, b2 ¼ r

rw
, enters into the Cooper

solution (Eq. 9.3) for the drawdown in an observation well during slug tests.

Fig. A7.12 Plots of function Fs(u, b) at different values of its second argument: a Fs(u, b) − lg(u),
b lg[Fs(u, b)] − lg(u)
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Appendix 7.11 Functions for Constant-Head Tests

1. Flowing Well-Function for Nonleaky Aquifers A(u, b)
Function (Fig. A7.13 and Table A7.10):

A u; bð Þ ¼ 1� 2
p

Z1
0

J0 sð ÞY0 sbð Þ � Y0 sð ÞJ0 sbð Þ
J20 sð ÞþY2

0 sð Þ � exp �us2ð Þ
s

ds:

Applications. Equation 8.1; u ¼ at
r2w
, b ¼ r

rw
.

2. Flowing-Well Function for Leaky Aquifers Z(u, b1, b2)
Function (Table A7.11):

Z u; b1; b2ð Þ ¼ K0 b1b2ð Þ
K0 b2ð Þ þ exp �ub22

� � 2
p

Z1
0

J0 sb1ð ÞY0 sð Þ � Y0 sb1ð ÞJ0 sð Þ
J20 sð ÞþY2

0 sð Þ
exp �us2ð Þ
s2 þ b22

sds:

Limits of the function: Z 1; b1; b2ð Þ ¼ K0 b1b2ð Þ=K0 b2ð Þ, Z u; b1; 0ð Þ ¼
A u; b1ð Þ.

Applications. Equation 8.11; u ¼ at
r2w
, b1 ¼

r
rw
, b2 ¼

rw
B
.

Fig. A7.13 Plot of function
A(u, b) versus the logarithm
of the first argument at dif-
ferent values of its second
argument

Table A7.10 Approximation of function A(u, b) (Hantush 1964)

Range Representation

u\0:05
A u;bð Þ � 1ffiffiffi

b
p erfc

b� 1
2
ffiffiffi
u

p þ b� 1ð Þ ffiffiffi
u

p
4b

i erfc
b� 1
2
ffiffiffi
u

p

 �

u[ 500
A u;bð Þ � W b2= 4uð Þ� �

ln 2:25uð Þ
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3. Flowing-Well-Discharge Function for Nonleaky Aquifers G(u)
Function (Fig. A7.14 and Table A7.12):

G uð Þ ¼ 4u
p

Z1
0

s exp �us2
� � p

2
þ arctan

Y0 sð Þ
J0 sð Þ


 �
ds:

Applications. Equation 8.3; u ¼ at
r2w
.

4. Flowing-Well-Discharge Function for Leaky Aquifers G(u, b)
Function (Fig. A7.15 and Table A7.13):

G u; bð Þ ¼ bK1 bð Þ
K0 bð Þ þ 4

p2
exp �ub2
� � Z1

0

1
J20 sð ÞþY2

0 sð Þ
s exp �us2ð Þ

s2 þ b2
ds:

Limit of the function: G u; 0ð Þ ¼ G uð Þ.
Applications. Equation 8.13; u ¼ at

r2w
, b ¼ rw

B
.

Fig. A7.14 Plots of function G(u): a G(u) − lg(u), b lg[G(u)] − lg(u)

Table A7.11 Approximation of function Z(u, b1, b2) (Hantush 1964)

Range Representation
u

b21
\0:05

Z u;b1;b2ð Þ � 1

2
ffiffiffiffiffi
b1

p exp b2 b1 � 1ð Þ½ �erfc b2
ffiffiffi
u

p þ b1 � 1
2
ffiffiffi
u

p
� �

þ

þ exp �b2 b1 � 1ð Þ½ �erfc �b2
ffiffiffi
u

p þ b1 � 1
2
ffiffiffi
u

p
� �

8>><
>>:

9>>=
>>;

ub22 [ 1
Z u;b1;b2ð Þ � W

b21
4u

;b1b2

� �

W

1
4u

; b2

� �
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Table A7.12 Approximation of function G(u) (Jacoband Lohman 1952)

Range Representation

u\0:05 G uð Þ � 0:5þ 1ffiffiffiffiffi
pu

p

0:05� u� 3
G uð Þ ¼

0:985285352� 0:6990572583 lg uð Þþ 0:3617096836 lg uð Þ2�
�0:1933285166 lg uð Þ3 þ 0:02384555597 lg uð Þ4 þ
þ 0:113819123 lg uð Þ5 þ 0:1394865128 lg uð Þ6 þ 0:0400202701 lg uð Þ7

2
4

3
5

(fitted by the author)

3� u� 500
G uð Þ ¼

0:9640284025� 0:5853545608 lg uð Þþ 0:1426085197 lg uð Þ2 þ
þ 0:008430131774 lg uð Þ3 þ 0:03620076922 lg uð Þ4�
�0:04772201769 lg uð Þ5 þ 0:01800303964 lg uð Þ6�0:002262080907 lg uð Þ7

2
4

3
5

(fitted by the author)

u[ 500 G uð Þ � 2= ln 2:25uð Þ; G uð Þ � 2=W 1= 4uð Þ½ �
u� 1

G 10nð Þ ¼ 1
100p

2
100 G0 10n; 10�2�n=2

� �þ
þ 1

100

P9
m¼1

2mþ 1ð Þ G0 10n;m10�2�n=2
� �þG0 10n; mþ 1ð Þ10�2�n=2

� �� �þ
þ P1

m¼1
2mþ 1ð Þ G0 10n;m10�1�n=2

� �þG0 10n; mþ 1ð Þ10�1�n=2
� �� �

8>>>><
>>>>:

9>>>>=
>>>>;
,

n ¼ lg u—the power of 10; G0 u; bð Þ ¼ exp �ub2
� �

p
2 þ arctan Y0 bð Þ

J0 bð Þ
h i

Fig. A7.15 Plot of function
lg[G(u, b)] − lg(u)

Table A7.13 Approximation of function G(u, b) (Hantush 1959, 1964)

Range Representation

u\0:01 G u; bð Þ � G u; 0ð Þ ¼ G uð Þ
ub2 [ 1, b\0:01 G u; bð Þ � 2=W 0:25u�1;bð Þ
b2=u[ 25 G u; bð Þ � 0:5þ exp �b2u

� �
=
ffiffiffiffiffiffi
pu

p
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Appendix 7.12 Error Functions

1. Error Function erf(u) and Complementary Error Function erfc(u)
Functions (Fig. A7.16 and Table A7.14):

erf u ¼ 2ffiffiffi
p

p
Zu
0

exp �s2
� �

ds; erf �uð Þ ¼ �erf u;

erfcu ¼ 2ffiffiffi
p

p
Z1
u

exp �s2
� �

ds

Limit values: erf 0 ¼ 0, erf1 ¼ 1; erfc 0 ¼ 1, erfc1 ¼ 0, erfc �1ð Þ ¼ 2.
Relationships: erf u ¼ 1� erfc u, erfc u ¼ 1� erf u, erfc �uð Þ ¼ 1þ erf u.
Derivatives of the functions:

@ erf u
@u

¼ 2ffiffiffi
p

p exp �u2
� �

;
@ erfc u
@u

¼ � 2ffiffiffi
p

p exp �u2
� �

:

Expansion in series (Abramowitz and Stegun 1964):

Fig. A7.16 Representation of
functions erf(u) and erfc(u)

Table A7.14 Approximation of function erf(u)

Range Representation

0\u\1
erf u ¼ 1� exp �u2ð Þ 0:254829592t � 0:284496736t2 þ 1:421413741t3�

�1:453152027t4 þ 1:061405429t5

� �
,

where t ¼ 1
1þ 0:3275911 u

(Abramowitz and Stegun 1964)

u� 0:1
erf u � 2uffiffiffi

p
p (Hantush 1964)
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erf u ¼ 2ffiffiffi
p

p
X1
n¼0

�1ð Þnu2nþ 1

n! 2nþ 1ð Þ :

2. Iterated Integral of the Complementary Error Function i n erfc(u)
Function (Fig. A7.17 and Table A7.15):

inerfc u ¼ 2ffiffiffi
p

p
Z1
u

s� uð Þn
n!

exp �s2
� �

ds; inerfc u ¼ in�2erfc u
2n

� u in�1erfc u
n

:

Limit value: inerfc 0 ¼ 1
2nC 1þ n=2ð Þ, where C uð Þ is gamma function (see

Appendix 7.14).
Function derivative:

@ inerfc uð Þ
@u

¼ �in�1erfc u:

Table A7.15 Iterated integrals of error functions for n = –1, 0, 1, 2

n Equation u = 0

–1
i�1erfc u ¼ 2ffiffiffi

p
p exp �u2

� � 1.128379167

0 i0erfc u ¼ erfc u 1

1
i1erfc u ¼ i erfc u ¼ �u erfc uþ 1ffiffiffi

p
p exp �u2

� � 0.5641895835

2
i2erfc uð Þ ¼ 1

4
þ u2

2

� �
erfc uð Þ � u

2
ffiffiffi
p

p exp �u2
� � 0.25

Fig. A7.17 Representation
of iterated error function
integrals for different val-
ues of n
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Appendix 7.13 Bessel Functions

1. Bessel Functions of the First and Second Kind of the Zero and First Order:
J0(u), J1(u), Y0(u), Y1(u) (Table A7.16 and Fig. A7.18)

J0 uð Þ—Bessel function of the first kind of the zero order (Table A7.17);
J1 uð Þ—Bessel function of the first kind of the first order (Table A7.18);
Y0 uð Þ—Bessel function of the second kind of the zero order (Table A7.19);
Y1 uð Þ—Bessel function of the second kind of the first order (Table A7.20).

Table A7.16 Integral representations and derivatives of Bessel functions

Function Derivative

J0 uð Þ ¼ 1
p

Zp
0

cos u sin sð Þds
�J1 uð Þ

J1 uð Þ ¼ 1
p

Zp
0

cos u sin s� sð Þds J0 uð Þ � 1
u
J1 uð Þ

Y0 uð Þ ¼ 4
p2

Zp=2
0

cos u cos sð Þ cþ ln 2u sin2 s
� �� �

ds

�Y1 uð Þ

Y1 uð Þ ¼ 1
p

Zp
0

sin u sin s� sð Þds� 1
p

Z1
0

es þ e�s cospð Þ exp �u sinh sð Þds Y0 uð Þ � 1
u
Y1 uð Þ

c ¼ 0:5772156649—Euler constant

Table A7.17 Approximation of function J0(u) (Abramowitzand Stegun 1964)

Range Representation

u\0:1 J0 uð Þ � 1—for practical calculations (Hantush 1964)

u� 3 J0 uð Þ ¼ 1� 2:2499997x2 þ 1:2656208x4 � 0:3163866x6 þ 0:0444479x8�
� 0:0039444x10 þ 0:00021x12

u� 3
J0 uð Þ ¼ f0ffiffiffi

u
p cos h0, w ¼ u=3,

f0 ¼ 0:79788456� 0:00000077x�1 � 0:0055274x�2 � 0:00009512x�3 þ
þ 0:00137237x�4 � 0:00072805x�5 þ 0:00014476x�6;

h0 ¼ u� 0:78539816� 0:04166397x�1 � 0:00003954x�2 þ 0:00262573x�3�
� 0:00054125x�4 � 0:00029333x�5 þ 0:00013558x�6

u[ 16
J0 uð Þ �

ffiffiffiffiffiffi
2
p u

r
cos u� p

4

� �
—for practical calculations (Hantush 1964)

372 Appendix 7: Special Functions: Analytical Representations, Graphs …



Table A7.18 Approximation of function J1(u) (Abramowitz and Stegun 1964)

Range Representation

u\0:1 J1 uð Þ � 0:5u—for practical calculations (Hantush 1964)

u� 3 w ¼ u=3,

J1 uð Þ ¼ u 0:5� 0:56249985x2 þ 0:21093573x4 � 0:03954289x6 þ 0:00443319x8�
�0:00031761x10 þ 0:00001109x12

� �
u� 3

J1 uð Þ ¼ f1ffiffiffi
u

p cos h1, w ¼ u=3,

f1 ¼ 0:79788456þ 0:00000156x�1 þ 0:01659667x�2 þ 0:00017105x�3�
� 0:00249511x�4 þ 0:00113653x�5 � 0:00020033x�6;

h1 ¼ u� 2:35619449þ 0:12499612x�1 þ 0:0000565x�2 � 0:00637879x�3 þ
þ 0:00074348x�4 þ 0:00079824x�5 � 0:00029166x�6

u[ 16
J1 uð Þ �

ffiffiffiffiffiffi
2
p u

r
sin u� p

4

� �
—for practical calculations (Hantush 1964)

Table A7.19 Approximation of function Y0(u) (Abramowitz and Stegun 1964)

Range Representation

u\0:01
Y0 uð Þ � 2

p
0:5772þ ln

u
2

� �
—for practical calculations (Hantush 1964)

u� 3 w ¼ u=3,

Y0 uð Þ ¼ 2
p
ln
u
2
J0 uð Þþ 0:36746691þ 0:60559366x2 � 0:74350384x4 þ 0:25300117x6�

� 0:04261214x8 þ 0:00427916x10 � 0:00024846x12

u� 3
Y0 uð Þ ¼ f0ffiffiffi

u
p sin h0, w ¼ u=3,

f0 ¼ 0:79788456� 0:00000077x�1 � 0:0055274x�2 � 0:00009512x�3 þ
þ 0:00137237x�4 � 0:00072805x�5 þ 0:00014476x�6;

h0 ¼ u� 0:78539816� 0:04166397x�1 � 0:00003954x�2 þ 0:00262573x�3�
� 0:00054125x�4 � 0:00029333x�5 þ 0:00013558x�6

u[ 16
Y0 uð Þ �

ffiffiffiffiffiffi
2
pu

r
sin u� p

4

� �
—for practical calculations (Hantush 1964)

Table A7.20 Approximation of function Y1(u) (Abramowitz and Stegun 1964)

Range Representation

u\0:01
Y1 uð Þ � � 2

pu
—for practical calculations (Hantush 1964)

u� 3 w ¼ u=3,

Y1 uð Þ ¼ 1
u

2u
p
ln
u
2
J1 uð Þ � 0:6366198þ 0:2212091x2 þ 2:1682709x4 � 1:3164827x6 þ

þ 0:3123951x8 � 0:0400976x10 þ 0:0027873x12

0
@

1
A

u� 3
Y1 uð Þ ¼ f1ffiffiffi

u
p sin h1, w ¼ u=3,

f1 ¼ 0:79788456þ 0:00000156x�1 þ 0:01659667x�2 þ 0:00017105x�3�
� 0:00249511x�4 þ 0:00113653x�5 � 0:00020033x�6;

h1 ¼ u� 2:35619449þ 0:12499612x�1 þ 0:0000565x�2 � 0:00637879x�3 þ
þ 0:00074348x�4 þ 0:00079824x�5 � 0:00029166x�6

u[ 16
Y1 uð Þ � �

ffiffiffiffiffiffi
2
pu

r
cos u� p

4

� �
—for practical calculations (Hantush 1964)
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2. Bessel Function of the First Kind of the mth Order Jm(u)
Function (Fig. A7.19):

Jm uð Þ ¼ 1
p

Zp
0

cos u sin s� msð Þds:

Expansion in series (Abramowitz and Stegun 1964)

Jm uð Þ ¼ u
2

� �mX1
n¼0

�u2=4ð Þn
n!C mþ nþ 1ð Þ !:

3. Modified Bessel Functions of the First and Second Kind of the Zero and
First Order: I0(u), I1(u), K0(u), K1(u) (Table A7.21 and Fig. A7.20):

I0 uð Þ—modified Bessel function of the first kind of the zero order
(Table A7.22);
I1 uð Þ—modified Bessel function of the first kind of the first order (Table A7.23);

Fig. A7.18 Plots of Bessel
functions: J0(u), J1(u), Y0(u),
Y1(u)

Fig. A7.19 Plot of function
Jm(u) versus its argument for
different orders
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K0 uð Þ—modified Bessel function of the second kind of the zero order
(Table A7.24);
K1 uð Þ—modified Bessel function of the second kind of the first order
(Table A7.25).

Table A7.21 Integral representations and derivatives of modified Bessel functions

Function Derivative

I0 uð Þ ¼ 1
p

Zp
0

exp u cos sð Þds
I1 uð Þ

I1 uð Þ ¼ 1
p

Zp
0

exp u cos sð Þ cos s ds I0 uð Þ � 1
u
I1 uð Þ

K0 uð Þ ¼ R1
0
exp �u cosh sð Þds �K1 uð Þ

K1 uð Þ ¼ R1
0
exp �u cosh sð Þ cosh s ds �K0 uð Þ � 1

u
K1 uð Þ

Table A7.23 Approximation of function I1(u) (Abramowitz and Stegun 1964)

Range Representation

u\0:1 I1 uð Þ � 0:5u—for practical calculations (Hantush 1964)

u� 3:75 x ¼ u=3:75,

I1 uð Þ ¼ u
0:5þ 0:87890594x2 þ 0:51498869x4 þ 0:15084934x6 þ 0:02658733x8 þ
þ 0:00301532x10 þ 0:00032411x12

 !

u� 3:75 x ¼ u=3:75,

I1 uð Þ ¼ euffiffiffi
u

p
0:39894228� 0:03988024x�1 � 0:00362018x�2 þ 0:00163801x�3�
� 0:01031555x�4 þ 0:02282967x�5 � 0:02895312x�6 þ 0:01787654x�7�
� 0:00420059x�8

0
B@

1
CA

u[ 5
I1 uð Þ � 1� 3

8u

� �
euffiffiffiffiffiffiffiffiffi
2p u

p —for practical calculations (Hantush 1964)

Table A7.22 Approximation of function I0(u) (Abramowitz and Stegun 1964)

Range Representation

u\0:1 I0 uð Þ � 1—for practical calculations (Hantush 1964)

u� 3:75 x ¼ u=3:75,
I0 uð Þ ¼ 1þ 3:5156229x2 þ 3:0899424x4 þ 1:2067492x6 þ 0:2659732x8 þ

þ 0:0360768x10 þ 0:0045813x12

u� 3:75 x ¼ u=3:75,

I0 uð Þ ¼ euffiffiffi
u

p
0:39894228þ 0:01328592x�1 þ 0:00225319x�2 � 0:00157565x�3 þ
þ 0:00916281x�4 � 0:02057706x�5 þ 0:02635537x�6 � 0:01647633x�7 þ
þ 0:00392377x�8

0
B@

1
CA

u[ 5
I0 uð Þ � 1þ 1

8u

� �
euffiffiffiffiffiffiffiffi
2pu

p —for practical calculations (Hantush 1964)
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Table A7.24 Approximation of function K0(u) (Abramowitz and Stegun 1964)

Range Representation

u\0:05
K0 uð Þ � ln

1:12
u

—for practical calculations (Hantush 1964)

u� 2 x ¼ u=2,
K0 uð Þ ¼ � lnx I0 uð Þ � 0:57721566þ 0:4227842x2 þ 0:23069756x4 þ 0:0348859x6 þ

þ 0:00262698x8 þ 0:0001075x10 þ 0:0000074x12

u� 2 x ¼ u=2,

K0 uð Þ ¼ e�uffiffiffi
u

p 1:25331414� 0:07832358x�1 þ 0:02189568x�2 � 0:01062446x�3 þ
þ 0:00587872x�4 � 0:0025154x�5 þ 0:00053208x�6

 !

u[ 5
K0 uð Þ �

ffiffiffiffiffi
p
2u

r
1� 1

8u

� �
e�u—for practical calculations (Hantush 1964)

Table A7.25 Approximation of function K1(u) (Abramowitz and Stegun 1964)

Range Representation

u\0:05
K1 uð Þ � 1

u
—for practical calculations (Hantush 1964)

u� 2 x ¼ u=2,

K1 uð Þ ¼ 1
u

u lnx I1 uð Þþ 1þ 0:15443144x2 � 0:67278579x4 � 0:18156897x6�
� 0:01919402x8 � 0:00110404x10 � 0:00004686x12

 !

u� 2 x ¼ u=2,

K1 uð Þ ¼ e�uffiffiffi
u

p 1:25331414þ 0:23498619x�1 � 0:0365562x�2 þ 0:01504268x�3�
� 0:00780353x�4 þ 0:00325614x�5 � 0:00068245x�6

 !

u[ 5
K1 uð Þ �

ffiffiffiffiffi
p
2u

r
1þ 3

8u

� �
e�u—for practical calculations (Hantush 1964)

Fig. A7.20 Plots of modified
Bessel functions: I0(u), I1(u),
K0(u), K1(u)
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4. Modified Bessel Function of the First Kind of the mth Order Im(u)
Function (Fig. A7.21):

Im uð Þ ¼ 1
p

Zp
0

exp u cos sð Þ cos msð Þds:

Expansion in series (Abramowitz and Stegun 1964)

Im uð Þ ¼ u
2

� �mX1
n¼0

u2=4ð Þn
n!C mþ nþ 1ð Þ !:

5. Modified Bessel Function of the Second Kind of the mth Order Km(u)
Function (Fig. A7.22):

Km uð Þ ¼
Z1
0

exp �u cosh sð Þ cosh msð Þds:

Expansion in series (Abramowitz and Stegun 1964):

Km uð Þ ¼
1
2

u
2

� ��mXm�1

n¼0

m� n� 1ð Þ !
n!

� u2

4

� �n
 �
þ �1ð Þmþ 1ln

u
2

� �
Im uð Þþ

þ �1ð Þm
2

u
2

� �mX1
n¼0

w nþ 1ð Þþw mþ nþ 1ð Þ½ � u2=4ð Þn
n! mþ nð Þ !


 �
8>>><
>>>:

9>>>=
>>>;
;

Fig. A7.21 Plot of the logarithm of function Im(u) versus a the logarithm of the argument and b its
argument for different orders of function
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where w ið Þ ¼ �cþ Pi�1

j¼1
j�1 is psi-function; w 1ð Þ ¼ �c; c ¼ 0:5772156649 is

Euler constant.

Appendix 7.14 Gamma Function Г(u)

Functions (Fig. A7.23 and Table A7.27):

C uð Þ ¼
Z1
0

su�1 exp �sð Þds; C uþ 1ð Þ ¼ u!; C uð Þ ¼ u� 1ð Þ !:

Expansion in series (Abramowitz and Stegun 1964):
1

C uð Þ ¼
X1
n¼1

cnu
n, where

values of cn are given in Table A7.26.

Fig. A7.22 Plot of the logarithm of function Km(u) versus a the logarithm of its argument and
b its argument for different orders of the function

Table A7.26 Values of cn

n cn n cn n cn
1 1.00000 00000 000000 10 –0.00021 52416 741149 19 0.00000 00001 043427

2 0.57721 56649 015329 11 0.00012 80502 823882 20 0.00000 00000 077823

3 –0.65587 80715 202538 12 –0.00002 01348 547807 21 –0.00000 00000 036968

4 –0.04200 26350 340952 13 –0.00000 12504 934821 22 0.00000 00000 005100

5 0.16653 86113 822915 14 0.00000 11330 272320 23 –0.00000 00000 000206

6 –0.04219 77345 555443 15 –0.00000 02056 338417 24 –0.00000 00000 000054

7 –0.00962 19715 278770 16 0.00000 00061 160950 25 0.00000 00000 000014

8 0.00721 89432 466630 17 0.00000 00050 020075 26 0.00000 00000 000001

9 –0.00116 51675 918591 18 –0.00000 00011 812746
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Appendix 7.15 Roots of Some Transcendent Equations

1. Roots of Equation antan(an) = c
See Fig. A7.24 and Table A7.28

Fig. A7.23 Plots of function
Г(u): Г(u) − u and 1/Г(u) − u

Table A7.27 Approximation of function Г(u) (Abramowitzand Stegun 1964)

Range Representation

0� u� 1
C uþ 1ð Þ ¼ 1� 0:577191652uþ 0:988205891u2 � 0:897056937u3 þ 0:918206857u4�

�0:756704078u5 þ 0:482199394u6 � 0:193527818u7 þ 0:035868343u8

� �

Fig. A7.24 Roots of equation antan(an) = c. Dependence of the root (1st, 2nd, 9th, and 10th) on
a c and b its number n at different values of c (0 and 10000). c is a constant; n is the root’s number
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2. Roots of Equations J0(xn) = 0, J1( xn,1) = 0
See Fig. A7.25 and Table A7.29.

3. Roots of Equation Jm(xn,m) = 0
See Fig. A7.26.

4. Roots of Equation J′m(yn,m) = 0
See Fig. A7.27.

J0m bð Þ ¼ m
b
Jm bð Þ � Jmþ 1 bð Þ ¼ Jm�1 bð Þ � m

b
Jm bð Þ:

Table A7.28 Approximations of transcendent equation (Hantush 1967)

Range Representation

n[ 6 an ¼ a6 þ n� 6ð Þp
c� 0:2; n ¼ 2; 3; 4; . . .

a1 ¼ 1� c
6

� � ffiffiffi
c

p
; an ¼ n� 1ð Þpþ c

n� 1ð Þ2p2 �
c2

n� 1ð Þ3p3
c� 0:01; n ¼ 2; 3; 4; . . . a1 ¼

ffiffiffi
c

p
; an ¼ n� 1ð Þp

c ! 1 an ¼ 2n� 1ð Þ p
2
(from the properties of tangent)

Fig. A7.25 Roots of
equations J0(xn) = 0, J1(xn,1) =
0. Dependence of the root
values of two equations on the
root’s number (first ten roots).
n is the root’s number

Table A7.29 Approximation of transcendent equations (for large root’s numbers)

Equation Representation

J0 xnð Þ ¼ 0 xn ¼ p n� p=4

J1 xn;1
� � ¼ 0 xn;1 ¼ p nþ p=4
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5. Roots of Equation J0(an) Y0(can) – Y0(an) J0(can) = 0
See Fig. A7.28.

6. Roots of Equation J0(an) Y1(can) – Y0(an) J1(can) = 0
See Fig. A7.29.

Fig. A7.26 Roots of
equation Jm(xn,m) = 0.
Dependence of equation
root on the root’s number
(first ten roots) for different
orders of the function. n is
the root’s number

Fig. A7.27 Roots of
equation J′m(yn,m) = 0.
Dependence of equation root
on the root’s number (first ten
roots) for different orders of
function derivative. n is the
root’s number
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Appendix 7.16 Useful Mathematical Functions

This appendix mostly gives trigonometric functions mentioned in the book. The list
of their denotations, equivalent representations, and derivatives is given here
(Table A7.30).

Fig. A7.28 Roots of equation J0(an) Y0 (can) – Y0(an) J0(can) = 0. a Dependence of the logarithm
of the root (1st, 2nd, 5th, and 10th) on the logarithm of c and b dependences of the root on its
number at different c (1.2, 1.5, 2.0, and 5.0). c is a constant; n is the root’s number

Fig. A7.29 Roots of equation J0(an) Y1 (can) – Y0(an) J1(can) = 0. a Dependence of the logarithm
of the root (1st, 2nd, 5th, and 10th) on the logarithm of c and b dependences of the root on its
number at different c (1.2, 1.5, 2.0, and 5.0). c is a constant; n is the root’s number
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